
Quality Assurance Automation in Autonomous Systems∗

Afsoon Afzal
Carnegie Mellon University
Pittsburgh, PA, United States

afsoona@cs.cmu.edu

ABSTRACT

Robots and autonomous systems are finding their way to interact
with the public and failures in these systems could be extremely ex-
pensive, even deadly. However, low-cost software-based simulation
could be a promising approach to systematically test robotics sys-
tems and prevent failures as early as possible. In our early work, we
showed that the majority of bugs could actually be reproduced and
discovered using low-fidelity simulation environment. We created a
high-level framework for automated testing of popular ArduPilot
systems. In this work, I propose novel approaches to automatically
infer powerful representation of system models, and generate test
suites with the purpose of enhancing automated fault localization
performance and describing the root cause of failures. Finally, I
propose to use those novel approaches to inform the construction
of automated program repair techniques for autonomous systems.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Software safety;

KEYWORDS

automated quality assurance, autonomous systems

ACM Reference Format:

Afsoon Afzal. 2018. Quality Assurance Automation in Autonomous Systems.
In Proceedings of the 26th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3236024.3275429

1 INTRODUCTION

For many years, the application of robots and autonomous systems
were limited to industrial settings. But there are no doubts that
robotics and autonomous systems are increasingly involved in peo-
ples’ everyday lives in recent years. For example, companies have
started testing autonomous vehicles on public roads. Besides trans-
portation, robots are commonly used in health care and medical
operations, autonomous delivery, education or even serving coffee.

∗This work is funded by NSF (#CCF-1563797) and CMU Presidential Fellowship; the
author is grateful for the support.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275429

One thing is now evident: failures in these systems can be very
expensive, and even deadly. In March 2018, a fatal crash by an
autonomous car took the life of a woman in Tempe, Arizona. As
these autonomous systems increasingly influence safety of the pub-
lic, it becomes critical to investigate and develop effective quality
assurance methods to prevent failures as early as possible.

As distributed systems, quality assurance in these systems face
particular challenges. First, validation of robotics systems com-
monly takes place using unit testing, component testing and field
testing. Although unit tests can detect and presumably prevent
failures at the method or module level, they are not particularly
effective in distributed context where multiple components need to
interact with each other. Field testing plays a vital role in robot vali-
dation and is the main method used to find critical issues. However,
it is extremely expensive. The fatal car crash is only one example of
such an event. Accordingly, testing and validation using simulation
environment would be a promising approach to minimize the cost
of failures. ExoMars Lander crash in October 2016 is a remarkable
example where the incident could have been prevented with proper
simulation testing.1

However, testing and validation of distributed systems in simu-
lation is non-trivial. First, specifying and determining the expected
behavior of the system under different configurations and setup
is challenging especially when the notion of correctness becomes
fuzzy and unclear. For example, when a robot is instructed to go to
location L, is it only considered a correct behavior if it arrives at
exact coordinates of L? How close to L would be close enough to
be accepted as correct behavior?

Secondly, triggering and detecting bugs in robotics systems could
depend on factors that are not inherently captured in simulation.
For instance, an extreme windy environment may be required for
a defect to be manifested. However, most existing simulators are
not advanced enough to simulate all aspects of environment and
the physical hardware. In addition, concurrent events and parallel
processes in distributed systems make it difficult to trigger defects
that depend on thread interleaving and timing constraints.

Thirdly, even if a bug is successfully triggered, it may not mani-
fest until some later point in the execution. Even if a misbehavior
is correctly detected, finding the root cause of the failure requires
tremendous manual effort. All aforementioned reasons explain why
it is burdensome to systematically test these systems in simulation.

My long-term goal is to discover and develop powerful methods
to automatically detect, localize and fix defects in real-world au-
tonomous systems using low-fidelity, software-based simulation. In
this paper, I propose ideas that will implement automated quality
assurance methods which are not easily applicable to autonomous
and distributed systems. The results of this research will encourage

1http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_
investigation_makes_progress

https://doi.org/10.1145/3236024.3275429
https://doi.org/10.1145/3236024.3275429
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Afsoon Afzal

and support roboticists to systematically validate robotic systems
in simulation, long before field testing takes place, reducing the
cost and danger of any failures.

2 RELATEDWORK

Automated testing and test generation for traditional software has
been around for decades. However, few studies have been done in
the area of autonomous systems. One of the earliest works on this
subject uses model-based testing approach and specifies a meta-
model of both the entities of the system under test (SUT) and inter-
action scenarios [4]. It applies a meta-heuristic search to automati-
cally generate test data representing complex situations. In a drone
collision avoidance system, an evolutionary test generation finds
challenging situations and corner cases [9]. Similarly a recent study
generates test scenarios for autonomous systems which expose
situations where transitions in performance mode of the system
takes place [6]. All aforementioned research require manual specifi-
cation of the system’s model and focus on generating a generic test
suite that could be used for regression, targeting corner cases and
complex circumstances. Building upon them, I propose to automate
inferring system models and specifically target test generation for
automated fault localization and program repair purposes.

Spectrum-based fault localization (SBFL) is among the first auto-
mated fault localization techniques to be proposed [2]. The suspi-
ciousness of each line in program is calculated based on the number
of failing and passing test cases that execute the line. SBFL is still
widely used in automated program repair community for debugging
traditional software.

3 PRELIMINARYWORK

Even though autonomous systems’ simulation may not be 100%
compatible with reality, it still provides valuable information about
the behavior of the SUT. However, most roboticists believe that
real-world field testing is the only way to find major flaws in the
system. To assess this common belief, I, in collaboration with others,
collected a dataset of historical bugs in highly popular open-source
ArduPilot2 project [7].

ArduPilot provides a framework for autonomous control of a
variety of vehicles including drones, planes and even submarines.
It accepts a variety of inputs from the user such as radio channel
(RC) input, ground control system (GCS), command line interface
(CLI) and predefined missions. Using GCS, the user can instruct
the ArduPilot system to autonomously undertake a command
such as going to a location or taking off the ground. In addition to
its wide range of inputs and subsystems, the rich version-control
history and popularity of ArduPilot made it a suitable system to
be considered as our case study.

ArduBugs: After applying automated and manual analysis on
thousands of commits, we identified 228 historical bugs in ArduPi-
lot system to create the ArduBugs dataset.3 Plus, we made these
bugs easily reproducible by including Docker containers for each
bug. We manually investigated every individual bug in this dataset
to respond to 7 questions showed in Table 1. These questions best
reflect the characteristics of bugs that impact their manifestation in

2http://ardupilot.org
3https://github.com/squaresLab/ArduBugs

simulation environment. Reasons behind selecting these questions
and the methodology of conducting the analysis are demonstrated
in details in [7]. Overall, we found that the absence of high-fidelity
simulation environment with support of complex mechanisms only
stops 45% of bugs from reproduction. For example, we could only
identify 10 bugs in the dataset requiring physical hardware for
manifestation. Similarly, only 9.6% of bugs are dependent on envi-
ronmental factors such as wind or obstacles. The empirical study
supports our hypothesis that the majority of these bugs can actually
be detected using low-fidelity simulation.

The findings of our initial study and availability of a comprehen-
sive dataset of robotics bugs encouraged us to take the next step:
a framework for test generation and execution. To automatically
assess the quality of SUT, we first need to design a framework in
whichwe can instruct the system to perform a number of commands
and observe its behavior for failure detection. We created Houston:
a high-level framework for testing ArduPilot systems [7].4

Houston: Overall, given the specifications of the SUT over
each possible action in terms of pre- and post-conditions, Hous-
ton executes sequences of commands and asserts satisfiability of
specifications. As an example, specifications for a single action of
TAKEOFF command for a drone are as follows:

(SUT.IS_ARMED ∧ SUT.ALTITUDE = 0)
⇒ SUT.ALTITUDE_AFTER = TAKEOFF_PARAMETER

This action is taken only if SUT is armed and resides on the ground
at the moment of receiving the command. If the preconditions
are satisfied, then the action is expected to take place. As a result,
in the final state of the system, after finishing the command, the
drone should have taken off the ground and the altitude should be
approximately the same as the parameter given to the command as
specified by the post-condition.

In our initial attempt, we were able to reproduce a few bugs in
ArduBugs dataset using Houston by manually determining the
sequence of commands that will trigger the buggy code [7]. Thus we
confirmed given the SUT’s specifications, Houston can successfully
perform different scenarios in simulation and assert correctness of
the SUT’s behavior according to the provided specifications.

4 PROPOSED FUTUREWORK

The preliminary work suggests opportunity in application and
advantages of automated quality assurance in the field of robotics.
Figure 1 depicts an overview of the overall structure of Houston
that I envision to achieve my goals. In Section 4.1, I propose to
elevate the reasoning power of Houston and automatically infer
SUT’s specifications. In Section 4.2, I propose to generate targeted
test suites with the purpose of increasing the precision of automated
fault localization techniques. Finally, in Section 4.3, I propose to
apply state-of-the-art automated program repair techniques on
robotics systems and advocate for improvements in that area.

4.1 Empowering Houston

Even though Houston has shown promises in test execution and
fault detection in ArduPilot systems, it demands additional im-
provements and advancements:

4https://github.com/squaresLab/Houston

http://ardupilot.org
https://github.com/squaresLab/ArduBugs
https://github.com/squaresLab/Houston

Quality Assurance Automation in Autonomous Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 1: Questions and possible options that specify bug characteristics impacting their manifestation in simulation.

Question Options

Does triggering or observing the bug rely on physical hardware? Yes, No
Is the bug only triggered when handling concurrent events? Yes, No
Which kinds of input are required to trigger the bug? CLI, GCS command, RC input, Missions
At which stage in the execution does the bug manifest? Initialization, Normal Operation, Failsafe
Is the bug only triggered under certain configurations? None, Static, Dynamic, Both
Is the bug only triggered in the presence of certain environmental factors? Yes, No
How does the bug affect the behavior of the system? Logging-related, Behavioral, Software crash

Specification
Inference Test Executor

Regression
Generator

Targeted
Generator

Test Suite Generator

Test
Suite

Test

User

Failing
Test

Targeted
Test Suite

Automated Fault
Localization

Root
Cause

Developer

FL

Automated
Program Repair

Fix

Specs

SUT in Simulation

Cmd State

Houston

Figure 1: The overall structure and flow of information in

Houston. Modules are represented by rectangles, informa-

tion by ovals, mandatory input/output by solid arrows and

optional input/output by dashed arrows. Greenmodules are

already implemented, blue ones are included in this pro-

posal and the yellow one is left for future studies.

Specification language: the current specification language of
Houston is very limited. It is only capable of specifying system’s
behavior in terms of observable variables and parameters and it
monitors system state as snapshots. I propose to express more pow-
erful specifications on the time and order of events, possibly in
continuous manner. As an example, when the robot receives the
GOTO command to a destination, it should not only travel to the
destination safely, but also it should never exceed the maximum
speed allowed. Looking at the snapshots of the system and environ-
ment, before and after the command takes place, does not allow for
specification of such requirement. Logics with higher expressive
power such as temporal logic can accomplish the intended. The
current specification language also suffers an inability to model
concurrency, which can possibly benefit from event and process
calculi or reactive automata. I will carefully assess the possible op-
tions, first, based on their added value to the power and flexibility
of specification language. Second, the portion of bugs in ArduBugs
dataset that could be captured with application of the option and
finally, the burden on the users in terms of manual effort.

Automated specification inference: The significant burden of
writing specifications for the system on developers is undeniable.
Even with the presence of a powerful, expressive specification lan-
guage, it is still highly difficult to gather an accurate and complete
set of specifications for the system. Since my intention is to au-
tomate QA as much as possible, I propose to take advantage of
specification mining techniques to automatically infer the likely
specifications of the system. Based on observations of many correct
executions and normal behavior, it is achievable to collect likely
invariants of the system [1]. Inconsistent performance of the robot
according to the likely invariants could be reported for manual in-
spection. Returning the feedback of manual review of the behavior
to Houston can gradually improve its set of true specifications.

4.2 Automated Test Suite Generation

Generation of high-quality test suites for regressions is a well-
studied area, and as mentioned in Section 2 there are tools and
techniques currently available which could be applied to the do-
main of robotics and be tailored to best fit the system’s requirements.
Similar to other techniques, Houston currently implements guided
test suite generation methods to maximize model coverage as well
as unguided methods such as random test generation. Although
extending Houston to use more intelligent methods such as evo-
lutionary algorithms for test generation is an option for future
direction, it will not be the focus of my proposal.

Instead, I propose to focus on targeted test suite generation
with the ambition to investigate root causes of a failure in the
system. Most of the users of robotics systems are not professional
programmers and when they observe a failure, they report the issue,
rarely accompanied by the log files, screenshots or videos to the
developers. The developers then have to manually reproduce the
failure or inspect the log files to find the possible root causes. Note
that in these systems the failure can actually happen long after the
faulty code is executed making it difficult to diagnose the problem.

It becomes more convenient to debug an issue if more instances
of the failure are available. In addition, having passing tests that
are somehow similar to the failure can further elaborate the cir-
cumstances impacting the failure. I propose to extend Houston
that given a test case, it first trims events to exclude the ones un-
related to the failure. Secondly, Houston should generate a test
suite that will find more instances of the failure as well as simi-
lar tests that successfully pass. For example, a user may observe
her drone crashing onto the ground while instructing it to land
automatically. She can reproduce this failure using Houston and
report the issue attaching the test for investigation by developers.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Afsoon Afzal

Meanwhile, Houston can take the failing test case, exclude all
aspects of it unrelated to the failure and generate more examples
of both failures and successes in the similar conditions and come
up with an explanation of why such failure arises. For example, it
can discover that the failure only occurs when the altitude of the
drone at the time of landing is more than 8 meters.

For achieving this goal, I propose to use delta debugging [8] and
symbolic execution [3] techniques. Given a sequence of commands
resulting to failure, delta debugging can be used to determine es-
sential ones for the failure. In our earlier example, let’s assume the
following test case is provided by the user (for simplicity, only the
altitude parameter of the commands are shown):

DISARM → ARM → ARM → TAKEOFF(alt : 5) →
GOTO(alt : 3) → GOTO(alt : 9) → GOTO(alt : 8) → LAND

Even though this example reproduces the failure, it includes a few
commands irrelevant to the problem. Applying delta debugging to
this sequence will result in the following:

ARM → TAKEOFF(alt : 5) → GOTO(alt : 9) → LAND

This test still fails and reproduces the issue but now it is more clear
what the possible reason could be. Furthermore, I would like to
make conclusions about the order of commands essential for the
failure. If A followed by B leads to a failure, it is constructive to
understand whether B followed by A has the same effect or not.

Next, I will use symbolic execution to generate tests with the
same sequence of commands but different parameters, to explore
all possible actions and behaviors of the system (which is modeled
by Houston) under the provided commands. Considering all pa-
rameters and environment settings as symbolic variables, we can
explore the search space and narrow down the range of parameters
and settings which result in the failure. For example, consider the
parameter to TAKEOFF as symbolic variable α and parameter to
GOTO as β . Using symbolic execution, Houston can automatically
generate the following specifications for the failure:

(α ≥ 8)
∨
(α < 8

∧
β ≥ 8)

These logical phrases basically inform the developer that the fault
only occurs when the drone is higher than 8 meters. I anticipate
that the generated constraints will be significantly valuable to the
developers and assist them to resolve the issue more quickly with
less effort. As evaluation, I need to conduct a user-study to measure
effectiveness of the proposed methods.

4.3 Fault Localization and Automated Repair

Although spectrum-based fault localization techniques are highly
popular (Section 2), we suspect they perform poorly on robots and
distributed systems. The assumption underlying SBFL is that the
faulty code is more likely to be exclusively executed by failing tests.
However in robotics systems, multiple components and modules
concurrently and continuously run together in the system to per-
form the tasks, and the faulty code can affect system state in a
way that the fault is captured long after being triggered. Therefore,
fault-localization could report tens or hundreds lines of code in
the project as equally the most suspicious. Inspecting a long list of
possible fault locations, even if it includes the real faulty code, is
not feasible for or even helpful to the developers.

I anticipate that the test suite with more instances of the failing
and passing tests evolved around the original failure (Section 4.2),
can actually escalate performance of fault localization in these
systems. In addition, mutation-based fault localization [5] could
be suitable as a technique to narrow down the most suspicious
parts of code to a smaller set. The accurate fault localization not
only benefits the developers to inspect the issue, but also opens
up the opportunity to use automated program repair. Automated
program repair techniques are directly affected by the performance
of fault localization and without an accurate one, they will not be
able to find a fix to the problem or will propose a low-quality fix,
over-fitting to the provided test suite. As evaluation, I will compare
the performance of fault localization, using test suite generated by
Houston with developer-provided tests and test suites generated
by other techniques.

If automated fault localization on robotics systems reaches an
acceptable performance, I will apply popular automated program
repair tools to this domain to assess their performance in generating
fixes for the defects. I propose to analyze the results, distinguish ma-
jor deficiencies and possibly make suggestions for improvements.

5 CONCLUSION

In conclusion, I target applying automated quality assurance on au-
tonomous systems using low-fidelity software simulation to reduce
the cost of failures. I first propose to extend our high-level robot’s
testing and automated test generation framework, Houston, to
automatically infer systems specification using a more powerful
and flexible specification language. Secondly, I propose a novel
technique to generate test suites with sole purpose of enhancing
performance of automated fault localization methods and conceiv-
ing a description for the possible root causes of the defect. Finally, I
propose to evaluate popular automated program repair techniques
on these systems and examine their shortcomings in this domain.

REFERENCES

[1] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering (TSE) 27, 2 (2001), 99–123.

[2] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In International Conference on Software
Engineering (ICSE). 467–477.

[3] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385–394.

[4] Zoltán Micskei, Zoltán Szatmári, János Oláh, and István Majzik. 2012. A concept
for testing robustness and safety of the context-aware behaviour of autonomous
systems. In KES International Symposium on Agent and Multi-Agent Systems: Tech-
nologies and Applications. Springer, 504–513.

[5] SeokhyeonMoon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the mutants:
Mutating faulty programs for fault localization. In International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 153–162.

[6] Galen E Mullins, Paul G Stankiewicz, and Satyandra K Gupta. 2017. Automated
generation of diverse and challenging scenarios for test and evaluation of au-
tonomous vehicles. In International Conference on Robotics and Automation (ICRA).
IEEE, 1443–1450.

[7] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Her-
nandez, and Claire Le Goues. 2018. Crashing simulated planes is cheap: Can
simulation detect robotics bugs early?. In International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 331–342.

[8] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.
In European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). 253–267.

[9] Xueyi Zou, Rob Alexander, and John McDermid. 2014. Safety validation of sense
and avoid algorithms using simulation and evolutionary search. In International
Conference on Computer Safety, Reliability, and Security. Springer, 33–48.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary work
	4 Proposed Future Work
	4.1 Empowering Houston
	4.2 Automated Test Suite Generation
	4.3 Fault Localization and Automated Repair

	5 Conclusion
	References

