
1

Mithra: Anomaly Detection as an Oracle for
Cyberphysical Systems

Afsoon Afzal, Claire Le Goues, Member, IEEE , and Christopher Steven Timperley

Abstract—Testing plays an essential role in ensuring the safety and quality of cyberphysical systems (CPSs). One of the main
challenges in automated and software-in-the-loop simulation testing of CPSs is defining effective oracles that can check that a given
system conforms to expectations of desired behavior. Manually specifying such oracles can be tedious, complex, and error-prone, and
so techniques for automatically learning oracles are attractive. Characteristics of CPSs, such as limited or no access to source code,
behavior that is non-deterministic and sensitive to noise, and that the system may respond differently to input based on its context
introduce considerable challenges for automated oracle learning. We present Mithra, a novel, unsupervised oracle learning technique
for CPSs that operates on existing telemetry data. It uses a three-step multivariate time series clustering to discover the set of unique,
correct behaviors for a CPS, which it uses to construct robust oracles. We instantiate our proposed technique for ArduPilot, a popular,
open-source autopilot software. On a set of 24 bugs, we show that Mithra effectively identifies buggy executions with few false positives
and outperforms AR-SI, a state-of-the-art CPS oracle learning technique. We demonstrate Mithra’s wider applicability by applying it to
an autonomous racer built for the Robot Operating System.

Index Terms—robotics and autonomous systems, cyberphysical systems testing, anomaly detection, oracle learning, clustering, Mithra

F

A

B

Fig. 1. Different example trajectories a quadcopter might take to
perform the same set of instructions (flying from point A to point
B). The black trajectories show acceptable behavior with respect
to the instructions; the red trajectory shows erroneous behavior.

1 INTRODUCTION

Cyberphysical systems (CPSs) integrate physical (e.g., sen-
sors, actuators) and computational components (e.g., mon-
itoring, perception, planning, control) to tackle problems
that neither physical or computational parts alone could
solve [91]. CPSs are an important part of our everyday lives
and have many safety-critical applications in avionics, med-
ical operations, and transportation. Failures in these systems
can be extremely expensive [2], [22] and even deadly [86],
[75] As a result, quality assurance is an essential part of
development for these systems.

Alongside formal verification [48], [69], testing plays an
essential role in ensuring the safety and quality of CPSs.
Field testing importantly serves to assess whole-system be-
havior in realistic environments and is critical in identifying

• A. Afzal, C. Le Goues, and C. S. Timperley are with the School of Computer
Science at the Carnegie Mellon University, Pittsburgh, Pennsylvania,
15213, USA. Email: afsoona@cs.cmu.edu, clegoues@cs.cmu.edu, ctimper-
ley@cmu.edu

potentially catastrophic failures before deployment. How-
ever, field testing is inherently manual and time-consuming,
and is potentially expensive, dangerous, and prone to errors
of human judgment [8]. Automated testing, via software-in-
the-loop (SITL) simulation, presents a promising alternative
to testing whole-system behavior that is substantially faster,
cheaper, and safer than manual field testing [95], [39], [104],
[36], [79], [106], [96], [7].

Fully automated whole-system testing requires oracles
that can determine whether a given CPS behaves correctly
for a given set of inputs [15]. In this paper, we tackle the
problem of providing such an oracle for mature systems;
systems that are in the final stages of development, and are
ready to be tested at scale ahead of their deployment (e.g.,
technology readiness level of 4 or higher [72]). In research
and practice, domain experts manually provide CPS oracles
in the form of a set of partial specifications, or assertions to
automatically evaluate the correctness of the system’s behav-
ior [120], [56], [68], [89], [71], [6]. However, manually writing
such specifications is tedious, complex, and error-prone [39],
[69], [76].

An attractive alternative to manual oracle specification is
to automatically learn them, such as from CPS traces (e.g.,
[77], [27], [3], [45], [50]). Automatically learning oracles for
CPSs presents several key challenges: (1) CPSs often con-
tain proprietary third-party components (such as cameras or
other sensors) for which source code is unavailable, and so
techniques should minimize or avoid relying on source code
access [62], [20]. (2) CPSs are inherently non-deterministic
due to noise in both their physical (e.g., sensors, actuators,
feedback loops) and cyber components (e.g., timing, thread
interleaving, random algorithms) and may react to a given
command in a potentially infinite number of subtly differ-
ent ways that are considered to be acceptable [63], [117],
as illustrated in Figure 1. That is, for a given input and

mailto:afsoona@cs.cmu.edu,clegoues@cs.cmu.edu,ctimperley@cmu.edu
mailto:afsoona@cs.cmu.edu,clegoues@cs.cmu.edu,ctimperley@cmu.edu

2

operating environment, there is no single, discrete response
that is correct, but rather an envelope of responses that
are deemed correct. And so techniques should be robust to
small, inherent deviations in behavior. Finally, (3) the CPS
may respond differently to a given instruction based on its
environment, configuration, and other factors (i.e., its oper-
ating context) [21]. For example, in the scenario illustrated in
Figure 1, the copter may refuse to fly to the specified point if
its battery is depleted. And so, techniques must be capable of
capturing contextual behaviors for a given command. While
these challenges individually are not unique to CPSs, their
combination is rarely observed in other systems, making
automated oracle inference for CPSs extremely challenging.

We present Mithra,1 a novel oracle learning approach,
based on anomaly detection, that tackles all of the above
challenges. By observing many executions, Mithra identifies
common behaviors, which it uses to construct its oracle.
Without the need for source code access, Mithra accepts
existing unlabeled telemetry logs as its input, which are
typically produced by CPSs over the course of their op-
eration. Mithra applies unsupervised multi-step clustering
to its input data (i.e., traces) to construct a set of behav-
ioral clusters, each representing a unique contextual behav-
ior. Mithra determines whether a given execution trace (i.e.,
telemetry log) exhibits anomalous behavior, which is treated
as erroneous [32], based on its similarity to identified be-
havioral clusters. Mithra tackles all three above-mentioned
challenges as it does not require source code access, avoids
overgeneralization and is robust to small deviations from
expected behavior, and identifies contextual behaviors.

We evaluate Mithra on a dataset of 24 real bugs from
the popular ArduPilot system. Our results show that Mithra
effectively generates CPS oracles, and is more successful at
doing so than prior work: Mithra correctly labels 69.3% of ex-
ecution traces, outperforming AR-SI [45] (the previous state-
of-the-art) by 11.5%. To demonstrate the wider applicability
of Mithra, we evaluate it on a dataset of 153 artificial bugs
in F1/10, an autonomous racer built on top of the popular
Robot Operating System [92].

To the best of our knowledge, none of the prior work
effectively tackles all three of the key challenges to CPS
oracle learning. Some are not fully automated [77], [116],
[27], or require access to source code [25], [33], [83]; others are
affected by noise and non-deterministic behavior [11], [65],
[114], [40], or cannot capture contextual behaviors [45], [12],
[3]. One of the most recent techniques introduced by Chen
et al. [25] tackles challenges 2 and 3 by learning behavioral
models of the CPS, but requires source code access to gener-
ate labeled data for their supervised learning approach. AR-
SI [45] tackles challenges 1 and 2 by checking the smoothness
of the CPS’s execution in terms of its sensor values. We pro-
vide a more detailed discussion of related work in Section 8.

This paper makes the following contributions:

• We present a novel oracle generation approach for
CPSs, based on anomaly detection via multi-step
multivariate time series clustering, that does not
assume source code access, is robust to imperfect

1. Zoroastrian divinity of contracts, who is undeceivable, infallible,
and eternally watchful: https://en.wikipedia.org/wiki/Mithra.

C A

B

C A

B

Fig. 2. A simplified depiction of the motivating example
(ArduPilot’s Issue #9657). The left figure illustrates the intended
path of the vehicle from A to C via B. The vehicle is instructed
to travel along a spline between A and B, before continuing
along a straight line between B and C. The right figure illustrates
the actual, erroneous path of the vehicle. The issue causes the
vehicle to skip the spline waypoint B, and travel directly from A
to C along a straight line.

traces [94], and can be applied to any system that logs
telemetry data, as is standard for CPSs.

• We evaluate our technique on ArduPilot, a popular,
open-source autopilot. We collect a dataset of 24 bugs,
and thousands of traces for ArduPilot. The dataset
is publicly available to be used by researchers in the
future.

• We demonstrate the wider applicability of our tech-
nique by applying it to a dataset of 153 artificial bugs
for F1/10 system, a ROS-based autonomous racer. We
make the dataset publicly available as part of our
replication package.

• We evaluate Mithra’s effectiveness by comparing
against AR-SI [45], a state-of-the-art technique. We
show that our technique performs significantly better
in predicting correctness of traces.

• We provide a replication package for our study, com-
plete with evaluation datasets, and source code for
our prototype implementation: https://doi.org/10.
6084/m9.figshare.14619177.

2 CASE STUDY

As a running example, we describe ArduPilot, an autopilot
software for a diversity of vehicles, including conventional
airplanes, multirotor helicopters, and submarines, that is
used by over a million vehicles across the world. At the time
of writing, the ArduPilot codebase is primarily written in
C++ and contains over 300,000 lines of code (measured using
SLOC). ArduPilot has been widely used in studies on CPSs
as it represents a fairly complex open-source CPS [45], [120],
[5], [109], [66].

2.1 Motivating Scenario
ArduPilot is a mature autopilot software for CPSs that is
used in a wide variety of vehicles and environments that are
either in, or approaching, deployment. Although ArduPilot
is functionally stable and used by over one million vehi-
cles [1], it continues to evolve, and new issues and erroneous
behaviors are continually discovered and reported over
time. In 2019 alone, 722 new issues were filed on ArduPilot’s
issue tracker, of which 130 were labeled as bugs. Many of
these bugs, such as the one described in Issue #9657, occur
only under specific conditions and may result in behavioral
changes that may have not been considered by ArduPilot’s

https://en.wikipedia.org/wiki/Mithra
https://doi.org/10.6084/m9.figshare.14619177
https://doi.org/10.6084/m9.figshare.14619177

3

User

ActuationArduCopter
Executable
(Cyber subsystem) Sensing St

Physical
(or simulated)

world

St recorded at 100 Hz

Command

Radio Control

Mission

Telemetry logs

Fig. 3. A simplified view of the ArduCopter communications
architecture. Input is provided by the user to the cyber com-
ponent in the form of discrete commands and missions, or as
a continuous radio control signal. The cyber component sends
signals to actuate the physical component of the system, and
reads sensor values. The state of the system, reported by the
sensors, is periodically written to a telemetry log.

testing team.2 In the case of Issue #9657, the vehicle mis-
behaves when instructed to navigate a series of waypoints
that includes a spline path. By default, the vehicle will travel
along a straight line between waypoints. However, operators
may also instruct the vehicle to traverse a smooth path be-
tween waypoints along a spline. In the relatively rare event
that a series of waypoints includes a spline path, the vehicle
will erroneously skip the first waypoint along a spline path
(Figure 2).

Identifying such bugs requires both a means of trig-
gering the bug (i.e., subjecting the system to a particular
scenario and environment), and detecting that a failure has
occurred (i.e., the system behaves in an unintended manner).
Numerous studies on automated test input generation have
focused on addressing the triggering problem [74], [110],
[78], [39], [106], [105], [44]. Using artifacts and models of the
system, or a search-based approach, these studies propose
ideas on generating test inputs, scenarios, and environments
that trigger and expose different behaviors of the system. In
this work, we assume a means of triggering bugs and focus
our attention on the problem of automatically detecting fail-
ures.

The example of ArduPilot and Issue #9657 motivates our
approach in creating oracles for mature systems. As men-
tioned, a mature software (e.g., ArduPilot) performs com-
mon scenarios as expected. For example, when a vehicle is
instructed to navigate to a target location, it performs as
expected under most conditions. Note that if such common
behavior becomes faulty in a mature system, the maintain-
ers and testers would be alerted quickly, as it affects many
users and scenarios. However, in circumstances involving
behaviors that are less commonly used, such as scenarios
that involve spline waypoints, the vehicle may misbehave
and perform not exactly as expected.

In this work, we use a novel clustering approach to au-
tomatically identify the common behaviors of the system,
which we use to form an oracle that can distinguish between
expected and unexpected executions. In Section 4, we de-
scribe Mithra’s approach for constructing such oracles.

2.2 ArduCopter’s Architecture
For our running example, we use ArduPilot (version
COPTER-3.6.9) as the controller for a simulated quadcopter.

2. Issue: https://github.com/ArduPilot/ardupilot/issues/9657
fixed by pull request https://github.com/ArduPilot/ardupilot/pull/
10338 [Date Accessed: September 2, 2020]

TABLE 1
A list of the command types supported by ArduCopter’s mission

planner that are considered in this work, their number of
parameters, and a brief description of their function.

of
Command Types Params Description

WAYPOINT 4 Straight navigation to waypoint.
SPLINE_WAYPOINT 4 Spline navigation to waypoint.
TAKEOFF 1 Takeoff from the ground.
LAND 2 Land on the ground.
LOITER_TURNS 4 Loiter & turn above a location.
LOITER_TIME 4 Loiter at a location for set time.
RETURN_TO_LAUNCH 0 Return to home location.
CHANGE_SPEED 2 Set the target horizontal speed.
SET_HOME 4 Set home location.
PARACHUTE 1 Trigger a parachute.

Figure 3 provides a simplified view of the cyber and phys-
ical components of ArduCopter. The user provides input
to ArduCopter’s cyber component in one of three forms:
(1) as a discrete command from a ground control station,
such as TAKEOFF, along with a set of parameters (e.g.,
desired altitude); (2) as a precomputed sequence of such
commands, known as a mission; or (3) in the form of a contin-
uous sequence of radio control signals. The cyber component
of ArduCopter interacts with the physical component by
polling its sensors at a fixed interval (e.g., once every 10ms)
to determine its extrinsic state and sending signals to its
actuators based on its extrinsic state and the user-provided
input. The extrinsic state st of the system at time t describes
the values of its state variables, each representing the value
of a particular sensor, and is composed of both continuous
(e.g., VELOCITY) and categorical values (e.g., STATUS). The
cyber component of the system periodically logs its extrinsic
state to a telemetry log at a fixed rate (e.g. 10 Hz). From
the telemetry log, we extract an execution trace S for each
command execution that records the sequence of extrinsic
states logged during execution. We use the execution trace
as input to our technique.

Figure 4 provides a simplified example of two execution
traces for the TAKEOFF command. Each execution trace can
be represented as a heterogeneous multivariate time series: time
series data consisting of multiple dimensions that include
both continuous and nominal data. Since the time taken
to complete an execution may vary, traces are variable in
length and may consist of thousands of recorded states. For
example, a 30-second execution of a single command results
in a trace with 300 state observations if telemetry is recorded
at 10 Hz. On another execution, the same command may take
50 seconds to complete and result in 500 state observations.

In this work, we restrict our attention to command-based
user inputs and leave an application of our approach on
continuous inputs to future work. We consider 10 out of 25
commands supported by the ArduCopter mission planner,
shown in Table 1, 3 and 18 associated state variables describ-
ing properties like orientation, position, and velocity. 4 The
15 excluded commands consist of 10 commands specific to
particular hardware (e.g., DO-DIGICAM-CONTROL triggers

3. http://ardupilot.org/copter/docs/mission-command-list.html
[Date Accessed: September 2, 2020]

4. The full list of these 18 state variables are included as an appendix.

https://github.com/ArduPilot/ardupilot/issues/9657
https://github.com/ArduPilot/ardupilot/pull/10338
https://github.com/ArduPilot/ardupilot/pull/10338
http://ardupilot.org/copter/docs/mission-command-list.html

4

0

6

12

18

Al
tit

ud
e

(m
et

er
s)

Time

ALTITUDE

-35.36297

-35.36294

-35.36291

-35.36288

La
tit

ud
e

(D
eg

re
es

)

Time

LATITUDE

Fig. 4. An example of two execution traces for the ArduCopter’s TAKEOFF command with respect to its ALTITUDE and LATITUDE
state variables. In the bottom trace (blue), TAKEOFF(ALT:4.0), the copter elevates 4 meters above the ground. In the top trace
(orange), TAKEOFF(ALT:14.7), the copter elevates 14.7 meters above the ground. In both cases, the LATITUDE remains roughly
fixed.

TABLE 2
A high-level comparison of several distance metrics for

clustering multivariate time series

Euclidean
Distance Eros DTW

Cost Low Low High
Variable length MTS 7 3 3
Agnostic to shift in time 7 3 3
Agnostic to scaling over time 7 7 3

the camera shutter if the copter is mounted with a camera), 4
commands controlling the mission planner itself and having
little to no impact on the behavior of the system (e.g., DO-
JUMP skips commands in the mission), and 1 command,
LOITER-UNLIMITED, that halts the execution of the mission
planner, as the system loiters above a location indefinitely.

3 CLUSTERING MULTIVARIATE TIME SERIES

Our oracle learning approach builds oracles by cluster-
ing telemetry logs represented by multivariate time series
(MTS). In this section, we provide the necessary background
in MTS clustering to understand the techniques underlying
our approach. Time series clustering has widely been used
to find common patterns in streams of data in a variety
of domains including bioinformatics and biology, genetics,
finance, air quality control, and meterology [101], [28], [24],
[13]. In this paper, we present a novel formulation of MTS
clustering that effectively and concisely encodes correct CPS
behavior, and which can be used as an efficient oracle for the
purpose of simulation-based testing.

k-Medoids: The k-medoids algorithm [58] is a cluster-
ing technique that uses a given distance metric to partition a
given dataset into k clusters such that the distance between
the points within a cluster and the center of that cluster
(i.e., the centroid) is minimized. Unlike the well-known k-
means, in which the center of a cluster is the average be-
tween its points, k-medoids uses an existing representative
point within the cluster as its center. By using an existing
point to represent the centroids of each cluster, k-medoids
avoids the difficulties of computing a mean time series from
a set of variable-length MTS, which may not be physically
meaningful. Furthermore, k-medoids is attractive for clus-
tering MTS datasets because it does not introduce additional,

DTW mapping

Time

Va
lu
e

5 10 15 20

−1
.0

0.
5

−1
0

1

Fig. 5. Dynamic time warping measures the distance between
two time series of unequal length by mapping the points in
each time series onto the other via warping. The solid lines
represent individual time series and the dashed lines represent
the warping that maps one onto the other. By warping, DTW
allows similarity between time series to be computed based on
their shape.

expensive distance calculations (e.g., measuring the distance
between a given point and the mean of a cluster, as in k-
means). k-medoids only compares existing points to one
another, and so a distance matrix can be efficiently precom-
puted. When accounting for the multiple clustering runs that
are necessary to determine a suitable k, k-medoids requires
O(n · (n − 1)) unique distance calculations as opposed to
O(k2n2) required by k-means.

Distance Metrics: Any clustering approach requires
a suitable distance metric. A common distance metric is
Euclidean distance (i.e., L2 norm), which is inexpensive to
compute. However, Euclidean distance can only be used for
same-length MTS (i.e., time series of an equal duration and
number of observations). In our case, where this assumption
does not hold, we require an alternative distance metric. We
discuss two alternative metrics that can compare variable-
length MTS: Dynamic Time Warping [16] and Eros [115].
Table 2 provides a high-level comparison of these distance
metrics in terms of their cost and associated qualities.

Dynamic Time Warping (DTW) [16], [55], [54], [41] is a

5

similarity measure5 that compares temporal sequences (i.e.,
traces) in terms of their “shape”. DTW accounts for varia-
tions in duration, length, speed, and amplitude between two
traces by mapping points from one trace to another trace via
a non-linear process of “warping”, illustrated in Figure 5.
DTW computes the optimal mapping betweenA andB such
that every point in A is mapped to at least one point in
B and vice versa in such a way that the order of points is
retained, and the sum of distances between mapped points
is minimized.

Although DTW provides a powerful means of comparing
variable-length k-dimensional time series, it comes at the
cost of a considerably O(kmn) higher runtime complexity
compared to O(kn) complexity of the L2 norm, where m
and n are the lengths of two time series. This can be reduced
using a DTW approximation or lower bound such as Fast-
DTW [99] or LB_Keogh [59].

The Extended Frobenius norm [115], or Eros, is a cheaper
alternative to DTW that uses Principal Component Anal-
ysis (PCA) [47], [90], [4] to measure the distance between
two variable-length MTS. Instead of measuring similarity
between them by aggregating similarities between their in-
dividual variables, Eros treats each MTS as a matrix and uses
the principal components to measure similarity.

Given an MTS dataset, Eros first determines the eigen-
vectors and eigenvalues of the covariance matrices of each
MTS within the dataset. Eros then aggregates the eigenval-
ues to obtain weights for the dataset. Finally, Eros uses those
weights to measure the similarity between two MTS in terms
of their associated eigenvectors.

Eros is considerably cheaper to compute than DTW with
an amortized runtime complexity that is linear in the num-
ber of variables in the MTS, and unlike Euclidean distance,
can be applied to variable-length MTS. Eros can account for
differences in shape and is capable of handling shifts in time,
but unlike DTW, it does not account for scaling over time.

4 APPROACH

In this section, we describe Mithra, our proposed unsuper-
vised oracle learning approach, based on anomaly detec-
tion for mature cyberphysical systems: Section 4.1 presents
an overview, Section 4.2 describes the preprocessing of the
training data, Section 4.3 presents how Mithra learns oracles,
and Section 4.4 describes how Mithra’s oracles are queried.
Finally, we discuss implementation details in Section 4.5.

4.1 Overview

Mithra learns oracles for CPSs that accept a vocabulary
of discrete commands, and produce telemetry logs (e.g.,
ArduCopter). As Figure 6 presents, Mithra first decomposes
the telemetry logs (i.e., execution traces) consisting of se-
quential execution of multiple commands, and aggregates
all command traces that represent the same command type
together to create the training data for each command type.6

5. Note that although DTW measures a distance-like quantity, it is not
a true distance metric since it violates the triangle inequality: d(x,z) ≤
d(x,y) + d(y,z).

6. From this point forward, we simply refer to command traces of a
command type as traces.

Mithra uses the training data to identify clusters represent-
ing the different behaviors for each command type. For ex-
ample, based on traces such as those in Figure 4, Mithra de-
tects one such common behavior, TAKEOFF(ALT:<palt>), in
which ALTITUDE gradually increases until reaching a speci-
fied altitude palt while LATITUDE remains constant. Building
oracles for each command type rather than individual test
cases (i.e., missions), allows Mithra to derive oracle for a
limited number of commands that can create thousands of
different test cases. A test case is only considered passing
when all commands in the mission perform as expected.

Approaches for clustering and classifying time series that
are based on comparing differences in shape are often supe-
rior in terms of performance than those that compare differ-
ences in time [93], [9]. Unfortunately, clustering strictly with
a DTW distance measure does not scale to large datasets. As
a result, Mithra clusters execution traces based on overall
shape using a three-step approach inspired by Aghabozorgi
et al.’s method for clustering large time-series data [10]. Fig-
ure 7 provides a high-level overview:

1) Preclustering: A low-resolution version of the train-
ing data is clustered into preclusters to reduce the
search space.

2) Purifying: As the low-resolution preclusters are in-
sufficiently accurate, Mithra next creates a set of
subclusters for each precluster using high-resolution
data.

3) Merging: Similar subclusters are merged to obtain a
set of behavioral clusters, producing a simpler model
that is cheap to query.

Using its learned behavioral clusters, Mithra constructs an
oracle for each command based on anomaly detection, that
marks execution traces as either CORRECT or ERRONEOUS
based upon their similarity to the contextual behaviors rep-
resented by those clusters.

Note that although the structure of our technique draws
inspiration from the prior work, Aghabozorgi et al.’s ap-
proach [10] can only be applied to datasets of time series
with fixed length, and thus is not suitable off-the-shelf for
our problem domain. Transforming traces to a fixed length
would either require scaling and downsampling longer
traces, losing important information, or padding shorter
traces with nominal data that would introduce inaccuracies
and reduce the effectiveness of clustering. Our novel contri-
bution is to use k-medoids in a multi-step clustering process
using Eros and FastDTW on a combination of both high
and low-resolution data that carefully balances accuracy and
efficiency to effectively discover clusters for variable-length
data without introducing artifacts. Our multi-step cluster-
ing process carefully overcomes the considerable computa-
tional costs of simply using k-medoids and DTW on high-
resolution trace data in a single clustering step, which can-
not be applied to large number of traces in the dataset. In
Section 5.5, we evaluate the effect of each step on overall
performance.

Overall, Mithra’s approach is designed to tackle all three
challenges of testing CPSs outlined in Section 1:

1) Mithra does not require access to the source code
or any other artifacts of the system. It is a blackbox

6

Decompose
into Command

Traces

Collect All
Command
Traces of

Same Type

Execution Traces Command Traces Command Traces per Type

Fig. 6. An overview of preparing relevant traces to each command type from the mission execution traces that consist of sequential
execution of multiple commands. Each color represents a different command type.

Training traces

Precluster 1 Precluster 2 Precluster 3

Subcluster 1 Subcluster 2 Subcluster 1 Subcluster 2 Subcluster 3 Subcluster 1 Subcluster 2

Behavioral cluster 1

Step 1:
Preclustering on
low-resolution
data with DTW

Step 2:
Subclustering

on
high-resolution
data with Eros

Step 3:
Merging

subclusters with
similar centroids

Behavioral cluster 2 Behavioral cluster 3

Fig. 7. An overview of Mithra’s three-step clustering approach of preclustering, subclustering, and merging. Solid lines represent
individual traces, and dashed lines represent cluster centroids.

approach that relies on readily available telemetry
data to identify and distinguish between behaviors.

2) Mithra is, by design, tolerant to noise and non-
determinism since it (a) builds its oracle using many
observations of system behaviors, and (b) uses an
acceptance threshold to account for noisy and non-
deterministic data.

3) Mithra is capable of capturing context-dependent
behavior while the context is captured by observable
variables. For instance, the differences in behavior
due to battery level can be captured by Mithra when
the effects of differing battery levels (e.g., decreased
speed) is captured by the training data.

4.2 Training Data

In the training phase, Mithra takes, as input, a set of teleme-
try logs. Ideally, the set should contain logs that exercise all
functionality of the system, covering a diversity of possible

scenarios, though this is not a strict requirement. Mithra
constructs an individual training set for each command type
within the vocabulary of the CPS by extracting the relevant
execution traces for that command type from the provided
set of telemetry logs, shown in Figure 6.

Note that, like most other techniques [81], [50], [45], [12],
[3], Mithra is unsupervised. Thus, these training logs are
not labeled in terms of whether they correspond to correct
or erroneous behaviors. Similar to the prior techniques [65],
[85], [33], [11], [25], [50], [116], Mithra makes the assumption
that most programs behave correctly most of the time, and
erroneous behavior is typically rare [32].

Mithra preprocesses training data in three ways:

1) Converting Categorical Data. Categorical variables
(e.g., ArduCopter’s MODE, which takes values such
as STABILIZE, AUTO, and GUIDED), complicate dis-
tance measures, as the distance between two cate-
gorical datapoints can only be measured by whether
they take the same value. Mithra converts categor-

7

ical data to numerical data using one-hot encod-
ing [29], where each category is turned into a dimen-
sion with binary value.

2) Normalization. Since it may not be meaningful to
compare different state variables (e.g., VELOCITY
and LATITUDE) due to differing ranges and units, we
standardize [42] the data to ensure that differences
in each state variable are treated with equal impor-
tance. Each dimension (i.e., state variable) within
a time series is scaled to resemble a normal distri-
bution with mean µ = 0 and standard deviation
σ = 1. Note that, by default and for the experiments
reported in this paper, we scale dimensions accord-
ing to a normal distribution since we do not assume
knowledge of the underlying distributions for each
dimension. However, if such knowledge is available,
an informed user may adjust this normalization step
to use an alternative distribution (e.g., Poisson) in
lieu of a normal distribution.

3) Feature Selection. Clustering techniques can suf-
fer from the curse of dimensionality on datasets with
many dimensions [23]. Therefore, Mithra accepts an
option to select NFEATURES dimensions in the training
data with the highest entropy [30] as a preprocessing
step. The entropy of a dimension X is defined as
H(X) =

∑
x P (x)logP (x) where P (x) the probabil-

ity of observing a particular value x ∈ X High en-
tropy in a dimension indicates that it can be informa-
tive in distinguishing different behaviors. We leave
investigation of other feature selection approaches to
future work.

4.3 Oracle Learning

Given a training set of traces for a command, Mithra at-
tempts to identify the set of contextual (i.e., disjunctive)
behaviors for that command. Mithra uses a three-step time
series clustering approach that allows clustering to scale to a
large number of detailed traces:

Step 1: Preclustering: Mithra first downsamples the
training execution traces to produce a set of low-resolution
traces to be clustered. By reducing the resolution of the data,
Mithra can more efficiently compute DTW distance on an
approximation of its input traces. The goal of this step is to
reduce the search space for the subsequent, more computa-
tionally intensive steps.

To lower trace resolution, Mithra uniformly drops data
points from each time series. For example, trace t =
[S0, S1, ..., S100] with 101 data points can be downsampled
to a lower-resolution trace t′ = [S0, S5, S10, ..., S95, S100]
with 21 data points. Even though t′ does not represent the
exact behavior of trace t, it approximates t’s shape and can
be used to create an initial set of preclusters.

To obtain the set of preclusters, Mithra applies k-medoids
clustering to the low-resolution data using FastDTW [99]
as its distance metric. The number of clusters k is obtained
dynamically by finding the 1 < k < kmax that maximizes
the silhouette score [97].

Step 2: Purifying: Since low-resolution data is used
to obtain the set of preclusters, those preclusters may rep-
resent spurious patterns that do not hold on the original,

high-resolution data. Therefore, in the second step, Mithra
divides the contents of each precluster into multiple sub-
clusters based on their Eros similarity. Although Eros is a
less effective means of measuring similarity between traces
than DTW (i.e., scale information is lost), it is inexpensive
to compute and provides useful partial information about
similarities in shape. To calculate the subclusters, we apply
k-medoids clustering within each precluster, and find the
medoid that is most representative of all traces within a sub-
cluster.

Step 3: Merging: Finally, Mithra uses FastDTW to
merge subclusters that share a similar shape based on the
original, high-resolution data. This step prevents representa-
tion of the same contextual behavior by multiple subclusters,
which leads to a simpler model that is cheaper to query. To
do so, Mithra first computes the DTW distance among the
medoids of subclusters using the original, high-resolution
traces for those medoids. Although the time series are more
detailed than those used during preclustering, the total num-
ber of time series, and, by extension, distance calculations, is
far smaller, ensuring this step is scalable.

Mithra then uses the computed medoid distances to re-
duce the set of subclusters into a set of behavioral clusters
by merging subclusters that share highly similar medoids.
Mithra uses hierarchical clustering [53] to find the sets of
similar subclusters. For every set of similar subclusters,
Mithra constructs a new behavioral cluster that includes
all their traces, and applies DTW averaging with uniform
scaling [35] to the medoids of those subclusters to produce a
centroid that best represents all traces in the new behavioral
cluster.

Finally, Mithra uses FastDTW to compute µβ and σβ for
each behavioral cluster β based on the distance from the
traces within β to the centroid of that cluster cβ , which
Mithra uses to construct the decision boundary for β.

4.4 Oracle Querying
The behavioral clusters for each command represent quali-
tatively different modes of behavior observed for that com-
mand. These may include both behaviors that are frequently
observed and assumed to be correct (e.g., clusters with more
than one hundred traces), as well as behaviors that are rarely
observed and suspected to be erroneous (e.g., clusters with
fewer than five traces).

Mithra uses the behavioral clusters to predict whether
a new trace is CORRECT or ERRONEOUS by comparing it to
the centroid of its best-fit cluster. More formally, given a
previously unseen execution trace τ for a command, Mithra
first finds the behavioral cluster β∗τ ∈ BC that most closely
resembles τ based on the DTW distance between τ and the
centroid of each cluster:

β∗τ = argmin
β∈BC

DTW (τ, cβ)

Mithra then uses β∗τ to predict the label `τ for that trace
as:

`τ =


ERRONEOUS if |β∗τ | < ρ

ERRONEOUS if DTW (τ, cβ∗
τ
) > µβ∗

τ
+ θσβ∗

τ

CORRECT otherwise

8

where |β| is the number of traces within β, ρ ∈ Z+ is
the rarity threshold, and θ ∈ R+ is the acceptance rate. If β∗τ
contains fewer than ρ traces, it is assumed to represent a rare,
and thus, erroneous behavior, and so, τ is marked as ERRO-
NEOUS. The rarity threshold allows Mithra to be more robust
towards erroneous traces in the training data. In the more
likely case where β∗τ contains at least ρ traces, then β∗τ itself is
assumed to represent a common, and thus, correct behavior.
In that case, Mithra uses the precomputed DTW distance
to determine whether τ lies within the decision boundary
of β∗τ , and if so, labels it as CORRECT. The acceptance rate
θ is used to alter the extent of the decision boundary and
provides the user with a means of controlling the precision-
recall tradeoff of the classifier to their preferences. We inves-
tigate and discuss the effects of θ in Section 5.3.

4.5 Implementation
Our implementation of Mithra, which we release as part of
our replication package, allows tuning of parameters to our
approach, such as resolution used during Preclustering and
NFEATURES (Section 4.2).

Derived Variables: One additional optional argu-
ment that can improve Mithra’s performance is parameter
handling. The behavior of a CPS with respect to a certain
command often depends upon the parameters provided to
that command. In the example of Figure 4, if the copter
flies to altitude of 10 meters instead of 4 when instructed
to TAKEOFF(ALT:4.0), the trace should be marked as ER-
RONEOUS. However, by default, Mithra cannot connect two
relevant dimensions in the traces (in this case, the ALTITUDE
of the copter and the parameter passed to the command
palt).

To account for parameter values, we can add new di-
mensions to input traces that are dynamically computed,
and derived from other dimensions (i.e., values of pa-
rameters and state variables). For example, for the com-
mand TAKEOFF(ALT:<palt>), Mithra derives a new vari-
able DIST_ALT as (palt − ALTITUDE), adds this variable to
the time series and performs the rest of the approach on
both the new and original variables. With this new dimen-
sion, Mithra’s learned clusters represent that, for example, in
CORRECT TAKEOFF(<palt>) traces, the value of DIST_ALT
always converges to zero; we can mark ERRONEOUS cases
where it does not (e.g., flying to 2 meters altitude when 5
is given as the parameter). Note that this added dimension
does not specify the correct or expected behavior; it merely
expresses a meaningful connection between parameters and
state variables.

The definitions for derived dimensions are presently
user-provided. As the number of command parameters is
usually very limited and many commands share the same
set of parameters, specifying these definitions is fairly sim-
ple. For example, many of the commands in ArduPilot take
parameters related to location,7 for which providing the def-
initions only once would be sufficient. For our case study of
ArduPilot, we specify definitions for 4 derived dimensions
that are shared among 7 of 10 commands. The definitions

7. https://ardupilot.org/planner/docs/
common-mavlink-mission-command-messages-mav_cmd.html#
frames-of-reference

for these added dimensions are provided as part of our
replication package. Note that Mithra can operate without
these additional dimensions, but it will be less accurate.
We anticipate that such dimensions are likely automatically
discoverable, a prospect that we leave to future work.

Telemetry Sampling Rate: As its input, Mithra ex-
pects a set of telemetry traces that describe the state at ap-
proximately the same fixed time interval. For systems that
use sensors with heterogeneous polling rates that are man-
aged by different processes (e.g., in ROS), telemetry data for
individual variables may be logged at different frequencies
and offsets. In a preprocessing step, we produce an appro-
priate trace for Mithra by stepping through the telemetry at
a fixed time interval, determined by the telemetry sampling
rate, and using the most recently reported observation for
each variable at each discrete time step.

The telemetry sampling rate can be increased to allow
Mithra to better discriminate between traces. However, this
will lead to longer training times and diminishing returns.

5 EVALUATION

To determine whether our technique is an effective oracle
learning method for mature cyberphysical systems, we con-
duct experiments, outlined in Section 5.2, on the case study
system described in Section 2. We compare Mithra to the
state-of-the-art [45] (AR-SI, described in Section 5.1). We
answer the following research questions:
RQ1 (Accuracy) How accurately does our clustering

method distinguish between correct and erroneous
traces? (Section 5.3)

RQ2 (Comparison) How does the labeling accuracy of
Mithra compare to AR-SI [45], a state-of-the-art ora-
cle learning approach for cyberphysical systems? (Sec-
tion 5.4)

RQ3 (Conceptual Validation) How do Mithra’s individual
steps influence its overall labeling accuracy? (Sec-
tion 5.5)

RQ4 (Time) How long does it take to train and query
Mithra, and how does it compare to AR-SI? (Section 5.6)

Finally, we evaluate Mithra on an autonomous racing
CPS in Section 5.7 to show its applicability to systems be-
yond ArduPilot. In Section 5.8, we discuss threats to the
validity of this evaluation.

5.1 Baseline

To compare our approach with the state-of-the-art, we reim-
plement He et al.’s approach for creating autoregressive sys-
tem identification (AR-SI) oracles for CPSs [45].8 Like our
approach, AR-SI targets CPSs, does not assume source code
access, does not require training on a bug-free, ground-truth
version of the CPS, and operates on a multi-variate time se-
ries. Based on the assumption that many CPSs are designed
to run smoothly when noise is under control, AR-SI deter-
mines whether a trace is erroneous or correct by checking the
smoothness of the system’s behavior. Let Yi ∈ Rm represent
the state of the system at time i with m state variables, and

8. The source code of AR-SI is not publicly available, and we were
unable to gain access via private email correspondence.

https://ardupilot.org/planner/docs/common-mavlink-mission-command-messages-mav_cmd.html#frames-of-reference
https://ardupilot.org/planner/docs/common-mavlink-mission-command-messages-mav_cmd.html#frames-of-reference
https://ardupilot.org/planner/docs/common-mavlink-mission-command-messages-mav_cmd.html#frames-of-reference

9

U ∈ Rq represent user input (i.e., command parameters).
AR-SI models the relationship between U and Yi as follows:

Yi = (

p∑
j=1

AjYi−j) +BU + ξi (1)

and optimizes model parameters A1, A2, ..., Ap ∈ Rm×m
and B ∈ Rm×q so that the runtime accumulated SI error
energy ξi is minimized. Then, AR-SI uses the optimal model
parameters (A∗1, A

∗
2, ..., A

∗
p and B∗) to predict the next state

of the system Yi+1:

Ŷi+1 = (

p∑
j=1

A∗jYi+1−j) +B∗U (2)

and collects the prediction error as ei+1 = Ŷi+1 − Yi+1.
In other words, AR-SI uses the past p observed states of

the system to predict its next state with the assumption that
state changes tend to be smooth and the prediction error
should be low. When the prediction error for all states in
the trace is computed, AR-SI checks whether they contain an
outlier prediction error. If so, the trace is marked as ERRO-
NEOUS, otherwise it is marked as CORRECT. Any prediction
error outside of µ± 6σ is considered an outlier.

AR-SI was originally evaluated on our case study CPS;
we discuss methodology next.

5.2 Experimental Methodology
We construct a benchmark for our case study, ArduPilot,
which we use to evaluate our research questions. This bench-
mark consists of a training dataset and an evaluation dataset.
The training dataset consists of unlabeled traces for 2500
randomly generated missions; it is used to train Mithra.
The evaluation dataset provides a labeled, balanced set of
233 erroneous and 233 correct traces. We use it as ground
truth when measuring the accuracy of Mithra and AR-SI (i.e.,
the ability to discriminate between erroneous and correct
traces). Note that the labels of the evaluation dataset are not
provided to either approach. Each mission that is generated
for these datasets consists of between 1 to 8 commands from
types presented in Table 1 (with repetition). Each command
accepts between zero and four parameters as input.

To ensure reproducibility and avoid physical harm, we
use software-in-the-loop (SITL) simulation to obtain traces
in lieu of traces from real-world field testing. We sample
state at a rate of 10 Hz according to the simulation clock
rather than the wall clock, retaining the same information
as a corresponding field trace. The collected mission traces
in this experiment contain between 90 to 5400 sample data
points (with median of 1640 data points). We use a 10 Hz
sampling rate as the baseline approach, AR-SI, cannot han-
dle a sampling rate higher than 10 Hz [45]. The practice of
using simulation to obtain traces for this type of evaluation is
common [25], [45], [11]. Below, we provide key details about
benchmark construction.

Training Dataset: As a source of training data for
our technique, we record traces for 2500 randomly gener-
ated missions in simulation; To accelerate data collection, we
spread the process across 30 cores and use 40X simulation
speedup. In total, we took roughly 15 hours to collect train-
ing traces. The generated missions of this dataset contain an

average of 6.75 commands, with an average of 1.85 parame-
ters per command.

Evaluation Dataset: We construct our evaluation
dataset by first identifying 11 historical bugs via man-
ual investigation of issues and bug-fixing commits on the
ArduPilot repository.9 We specifically target issues that im-
pact the autonomous mission executor of the Copter vehicle:
issues that are tagged as bug, and directed to Copter sub-
system or all Ardu vehicles, and are executed by the auto
mode (mission controller) of the system. Additionally, we
only considered the issues that result in observable changes
in the system behavior based on the description provided
on the issue-tracker by the users, since both Mithra and AR-
SI are only capable of identifying anomalies in the system’s
behavior. Therefore, configuration bugs and issues due to
variation in equipment and software are out of scope for
both approaches.

We transform each historical bug into a controlled bug
scenario by manually grafting the bug onto the ground-
truth version of ArduPilot, COPTER-3.6.9. By individually
grafting the bugs onto the ground-truth version, rather than
using those historical versions directly, we ensure that the
only differences in behavior are due to a particular bug and
not from an unrelated change to the program. We generate
an additional 13 bugs by applying the same historical faults
to other parts of the code, raising the total number of bug
scenarios to 24.

For each bug scenario, we use a hand-written mission
template, tailored to that scenario, to randomly generate
10 missions that trigger and manifest the bug. We create
multiple missions for a single bug scenario since different set
of commands and parameters may have different behaviors
on the specified bug scenario, and 10 randomly generated
missions can cover more variety of these changes in behav-
ior. After running each mission, we collect line coverage of
the execution to ensure that the executed mission does in fact
execute the lines of interest (i.e., faulty lines).

Finally, we use the generated missions to construct an
evaluation set of correct and erroneous traces. We obtain
240 erroneous traces by executing each bug scenario against
its associated bug-triggering missions. However, we ex-
clude traces resulting in software crashes (e.g., segmenta-
tion faults) from our dataset since those traces can simply
be labeled as ERRONEOUS and no oracle is required. We
exclude 7 out of 240 traces due to system malfunction. On
average, the generated missions contain 5.58 commands and
2.36 parameters per command. We then obtain 233 correct
traces by executing all 233 bug-triggering missions against
the ground-truth version of the program, and create a bal-
anced set of evaluation traces.

Comparison to AR-SI’s Methodology: AR-SI was
originally evaluated on a dataset of 8 historical ArduPilot
bugs and 17 artificial bugs created by fault injection [45].
Similar to our approach, He et al. collect a set of traces,
which are considered ERRONEOUS if they execute the faulty
lines, and CORRECT otherwise. However, the AR-SI dataset
of bugs and traces is not available publicly, and we have been
unable to gain access via private correspondence. Therefore,

9. https://github.com/ArduPilot/ArduPilot

https://github.com/ArduPilot/ArduPilot

10

we created a dataset of 24 real-life bugs and 466 traces, and
release it as a benchmark to be used by studies in the future.

To evaluate the effectiveness of AR-SI, He et al. compared
AR-SI against a “human oracle” devised by CPS experts.
The human oracle consists of three rules that check that the
velocity and angular velocity of the copter are within certain
bounds (e.g., “velocity shall never exceed ±20m/s”). He et
al. found that AR-SI produced fewer false positives and false
negatives than the human oracle. Approximately 70% of
traces that were identified as erroneous by the human oracle
were, in fact, correct. We choose not to evaluate against
a human oracle since its performance is dependent upon
the knowledge and skills of the experts, and therefore any
comparison to such an oracle would not yield meaningful
insights on the performance of Mithra or AR-SI.

Setup: To account for nondeterminism, we run each
experiment on 20 different seeds. For all experiments, we run
Mithra with maximum number of clusters kmax = 15, and
feature selection NFEATURES = 10. We have selected these op-
tions as a high (and safe) upper bound based on the number
of different behaviors that can arise in a command accord-
ing to the system’s documentation, and our understanding
of the number of features that can have significant impact
on the system’s behavior with respect to a command. We
discuss selection of rarity threshold ρ, and acceptance rate
θ in Section 5.3. We run AR-SI with p = 10, which is the
best performing parameter for this approach on ArduCopter
reported by the original paper [45].

We conduct our experiments on a single machine, run-
ning Ubuntu 18.04, with the following specifications: TR
2990WX (32 cores), 64GB RAM, GTX 1080 Ti, and a 1
TB NVMe SSD. We used Python 3.6.2, TensorFlow 1.14.0,
Docker 18.06.1-ce, PyClustering 0.9.0 [84].

Replication: We provide our source code, raw re-
sults, scripts to analyze those results, and benchmark traces
as part of our replication package: https://doi.org/10.6084/
m9.figshare.14619177.

Evaluation Metrics: To evaluate a candidate model
(i.e., the output of our technique), we iterate over each trace
in the evaluation set and check whether the label predicted
by the model (i.e., CORRECT or ERRONEOUS) matches the
expected label. Note that a trace is labeled as CORRECT if
and only if all the command traces of that trace are labeled
CORRECT. We then compute the number of true positives TP
(erroneous traces marked as ERRONEOUS), false positives
FP (correct traces marked as ERRONEOUS), true negatives
TN (correct traces marked as CORRECT), and false negatives
FN (erroneous traces marked as CORRECT). From those val-
ues, we obtain a summary of model performance:

Precision: fraction of traces reported as erroneous that are
truly erroneous (TP

TP+FP).
Recall: fraction of erroneous traces reported as such

(TP
TP+FN).

Accuracy: fraction of correctly labeled traces
(TP+TN
TP+FP+TN+FP).

Note that we use accuracy rather than F1-score, defined
as the harmonic mean of recall and precision, as an overall
measure of performance as the F1-score places little weight
on false positives and is best suited to imbalanced datasets.
Below, we answer our research questions presented in Sec-

Acceptance Rate

0.2

0.4

0.6

0.8

1

2 4 6 8

PRECISION RECALL ACCURACY

Fig. 8. Relationship between Mithra’s median precision (blue
triangles), recall (red diamonds) and accuracy (yellow circles)
and acceptance rate used to classify outliers.

Fig. 9. Two behavioral clusters for LOITER_TIME that were
learned by Mithra, plotted with respect to normalized LATITUDE
(y-axis) over time (x-axis). Each blue line represents a single
trace in the cluster, and the red lines represent the centroid of
the cluster. The left cluster captures the behavior of the copter
moving to a specified location before loitering, whereas the right
cluster shows the behavior of remaining at its current location
and loitering.

tion 5.

5.3 RQ1: Accuracy
Using the training dataset, Mithra identifies a set of be-
havioral clusters for every command type in Table 1. On
average, Mithra identifies 5.56 clusters per command type,
ranging from 3 to 14 clusters per command type with median
of 5. Among all identified clusters over all 20 seeds, 4% of
clusters contain fewer than 5 traces, which can represent rare
behavior in the training dataset.

Figure 8 illustrates the median performance of Mithra
with different acceptance rates θ (with ρ = 5). As the accep-
tance rate increases, recall decreases and precision increases,
resulting in a more conservative model that detects fewer
erroneous traces overall, but ensures that traces marked as
erroneous are more likely to be truly erroneous. Overall
accuracy remains fairly steady as the acceptance rate is in-
creased, demonstrating the tradeoff between false negatives
and false positives. By modifying the acceptance rate, users
can customize Mithra to their preferences [52], [98].

Overall, Mithra achieves a median accuracy of 66.5%
across all seeds, and reaches its highest accuracy of 69.3%
when its acceptance rate θ = 1.5 (marking 74.7% of truly cor-
rect traces, correct). We therefore use acceptance rate θ = 1.5
for the rest of our experiments.

https://doi.org/10.6084/m9.figshare.14619177
https://doi.org/10.6084/m9.figshare.14619177

11

TABLE 3
The impact of rarity threshold ρ on Mithra’s performance with

respect to the number of traces that are marked as
ERRONEOUS due to rarity over all 20 seeds, and the median

accuracy reached by Mithra (θ = 1.5).

Rarity threshold # of ERRONEOUS traces Median
ρ by rarity (20 seeds) accuracy

0 0 69.3%
5 8 69.3%
10 78 68.8%

To study the impact of rarity threshold ρ on Mithra’s
performance, we set its value to 0, 5, and 10, and compute
the number of traces that are marked as ERRONEOUS duo
to matching with a rare behavior cluster, and measuring
the median accuracy of Mithra presented by Table 3. As
expected, when ρ = 0 no trace considered as presenting rare
behavior since no cluster has fewer than 0 traces in it to be
considered rare. Compared to ρ = 0, ρ = 5 and 10 mark
higher number of traces as ERRONEOUS duo to rarity (8 and
78 respectively). ρ = 5 reaches the same median accuracy
of 69.3%, while ρ = 10 results in slightly lower median
accuracy of 68.8%. We use the rarity threshold of ρ = 5 for
the rest of our experiments.

As an example of a correctly detected behavior for
ArduCopter, we take a look at the behavioral clusters for
the LOITER_TIME(TIME, LAT, LON, ALT) command. Ac-
cording to the ArduCopter documentation,10 the behavior of
LOITER_TIME is described as “The vehicle will fly to and
then wait at the specified location for the specified number
of seconds.” However, as stated in the documentation, if
the given latitude and longitude are both set to zero, the
copter should hold at its current location. Figure 9 illustrates
the behavioral clusters that were identified by Mithra for
LOITER_TIME. Cluster 1 captures traces where the latitude
of the copter changes drastically, whereas in Cluster 2, the
latitude of the copter remains constant. In this example, we
can see that Mithra automatically identifies the two correct
behaviors of LOITER_TIME as stated in the documenta-
tion.

The motivating example described in Section 2.1 illus-
trates the case where the copter misbehaves on SPLINE_-
WAYPOINT command that is followed by another naviga-
tion command. On 20 evaluation traces (10 correct and 10
erroneous) generated for this issue, Mithra reaches median
accuracy, recall and precision of 70% , 90%, and 66.6%, re-
spectively with θ = 0.5, and 65%, 50%, and 71%, respectively
with θ = 1.5. Intuitively, this demonstrates that when Mithra
is provided traces that trigger this issue, Mithra can correctly
mark those traces as ERRONEOUS 90% of the time (θ = 0.5).

5.4 RQ2: State-of-the-art Comparison
Figure 10 presents a comparison of the performance of
Mithra against AR-SI. The median precision, recall, and ac-
curacy of AR-SI are 62.2%, 39.0%, and 57.8% respectively,
compared to Mithra’s 74.7%, 56.0%, and 69.3%. Using a
Mann-Whitney U test (α = 0.05) we demonstrate that

10. http://ardupilot.org/copter/docs/mission-command-list.html#
loiter-time

TABLE 4
For each bug, the total number of traces that are marked true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN) over all 20 seeds per approach, and the overall
accuracy (Acc.) on labeling traces for each bug. The bugs are

either historical (F) or inspired by historical (N) bug.

Mithra AR-SI
Bug TP TN FP FN Acc. TP TN FP FN Acc.

F1 53 166 34 147 54.7 63 145 55 137 52.0
N2 70 130 50 110 55.5 53 132 48 127 51.4
N3 72 63 77 68 48.2 42 121 19 98 58.2
F4 48 118 82 152 41.5 58 151 49 142 52.2
F5 106 160 40 94 66.5 43 168 32 157 52.7
F6 54 171 29 146 56.2 48 160 40 152 52.0
F7 200 176 24 0 94.0 119 156 44 81 68.7
F8 200 158 42 0 89.5 140 163 37 60 75.7
F9 58 171 29 142 57.2 56 159 41 144 53.7
F10 85 190 10 115 68.7 66 171 29 134 59.2
N11 185 165 35 15 87.5 124 162 38 76 71.5
N12 67 165 35 133 58.0 44 162 38 156 51.5
F13 149 171 29 51 80.0 107 142 58 93 62.2
N14 179 179 21 21 89.5 117 163 37 83 70.0
N15 99 177 23 101 69.0 64 150 50 136 53.5
F16 151 154 46 49 76.2 102 126 74 98 57.0
N17 200 145 55 0 86.2 104 146 54 96 62.5
N18 105 148 52 95 63.2 86 133 67 114 54.7
N19 140 117 23 0 91.8 73 109 31 67 65.0
N20 148 169 31 52 79.2 82 156 44 118 59.5
N21 63 152 48 137 53.7 60 142 58 140 50.5
F22 121 183 17 79 76.0 46 164 36 154 52.5
N23 29 181 19 171 52.5 43 147 53 157 47.5
N24 63 149 51 137 53.0 68 154 46 132 55.5

Mithra achieves significantly higher precision, recall, and ac-
curacy compared to AR-SI. That is, Mithra detects a greater
number of erroneous traces and does so with higher confi-
dence.

We additionally use the intra-class correlation coefficient
ICC(3, 1) [61] to measure the reliability of Mithra and AR-
SI across 20 seeds. This metric measures the consistency of
a model in assigning the same label to a given trace across
different seeds, and takes a value between zero and one; one
being perfect reliability, and zero the complete absence of
reliability. We find that Mithra demonstrates a “good” relia-
bility of 0.840, whereas AR-SI exhibits a “poor” reliability of
0.349. Intuitively, this result shows that Mithra is more likely
to assign the same label to a given trace regardless of the seed
used during training.

Table 4 presents the performance of Mithra and AR-SI
on each bug in our evaluation dataset over all 20 seeds. As
presented, there are 10 bugs that Mithra labels with more
than 75% accuracy, out of which 5 are historical bugs. How-
ever, AR-SI is only capable of labeling traces related to bug
#8 with more than 75% accuracy. This table also shows that
Mithra can label traces of four bugs with zero false negatives,
meaning that it marks all faulty traces for those bugs as
ERRONEOUS over all 20 seeds, and the accuracy on those
bugs are all above 85%, which shows it is also accurate in
labeling the correct traces. AR-SI is not able to label traces for
any of the bugs with zero false negatives. In fact, the lowest
number of false negatives it reaches is 60 traces for bug #8. If
we only consider the 11 historical bugs, Mithra reaches mean
accuracy, precision, and recall of 70.6%, 75.0%, and 58.6%,
while AR-SI reaches 58.6%, 62.4%, and 39.2% respectively.

http://ardupilot.org/copter/docs/mission-command-list.html#loiter-time
http://ardupilot.org/copter/docs/mission-command-list.html#loiter-time

12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision

AR-SI Mithra

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

AR-SI Mithra

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy

AR-SI Mithra

Fig. 10. A performance comparison between AR-SI and Mithra. Using a one-sided Mann-Whitney U test, we show that Mithra
outperforms AR-SI significantly (α = 0.05) in terms of precision, recall, and accuracy.

TABLE 5
A comparison of Mithra’s performance when the output clusters
of one of its steps is used to construct the classifier in terms of
precision, recall, and accuracy, reported by their median and
interquartile range (IQR) measuring the difference between

75th and 25th percentiles across 20 seeds. Using a one-sided
Mann-Whitney U test [73], we show that both Behavioral

Clusters and Subclusters have significantly higher precision
and accuracy, and lower recall than Preclusters (α = 0.01). We
are unable to find a significant difference between Subclusters

and Behavioral Clusters.

Preclusters Subclusters Beh. Clusters
Median IQR Median IQR Median IQR

Precision 0.52 0.01 0.72 0.06 0.75 0.06
Recall 0.96 0.03 0.59 0.04 0.56 0.04
Accuracy 0.54 0.02 0.68 0.02 0.69 0.02

5.5 RQ3: Conceptual Validation

Each of the three steps of Mithra’s clustering approach is
designed to improve the accuracy of its detected clusters
while supporting scalability. To evaluate the individual im-
pact of those steps, we use the output produced by each
step (i.e., preclusters, subclusters, and behavioral clusters) as
input to oracle querying, which we then use to measure the
performance of each step (Table 5).

Using the outputs of either the second or third step of our
approach (i.e., subclusters and behavioral clusters) to pro-
duce a classifier results in significantly higher precision and
accuracy (α = 0.05) than a classifier constructed using the
output of only the first step (i.e., preclusters). This finding
demonstrates that solely using Dynamic Time Warping on
low-resolution data is insufficient on its own for precisely
detecting behavioral patterns.

We are unable to show a significant difference in perfor-
mance between using subclusters and behavioral clusters.
Recall, however, that the intention behind Mithra’s third
step is not to improve functional performance, but rather to
effectively reduce the number of reported clusters by com-
bining clusters that represent the same behavior. On average,
Mithra identifies 21 subclusters for each command, which
it reduces to an average of 5.5 behavioral clusters after its
merging step. By merging non-unique clusters, we reduce
the cost of oracle querying by decreasing the number of ex-
pensive DTW distance calculations. Furthermore, reporting
fewer clusters may ultimately aid user comprehension of the
discovered behaviors and thus provide higher confidence in

the output of the technique. However, non-unique clusters
do not impact Mithra’s performance since oracle querying
is independent of cluster uniqueness. Our results provide
empirical evidence that the process of merging clusters is
indeed effective at reducing the number of clusters, and
does not have any significant impact on overall performance,
thereby indicating that information is preserved.

To investigate the importance of preclustering, we ap-
ply step 2 of Mithra’s approach in isolation to the origi-
nal training traces. The resulting classifier obtains a median
precision, recall, and accuracy of 53.2%, 90.9% and 55.4%,
respectively, providing evidence that preclustering of low-
resolution traces with DTW before subclustering results in
significantly higher precision and accuracy (α = 0.01).

5.6 RQ4: Time

Our approach for automatically generating CPS oracles re-
quires an up-front training stage, whereas AR-SI can simply
be applied to evaluation traces without training. Although
Mithra’s training can take several hours to complete, de-
pending on the size of the training data, that cost only needs
to be paid once and can be amortized. For our experiments,
Mithra’s training took 4 hours and 45 minutes to complete
and was spread across 30 threads. However, by storing and
reusing computed distance matrices, Mithra’s training time
for subsequent seeds was reduced to an average of 29.59
minutes. AR-SI’s cost of labeling a single query trace is rel-
atively expensive, since it repeatedly optimizes a number of
parameters for every datapoint in the trace. In our experi-
ments, on average, it took 27.65 minutes for AR-SI to label
all evaluation traces using 30 threads (i.e., each trace took
approximately 107 thread-seconds). For Mithra, it took an
average of 2.79 minutes to label all evaluation traces using
30 threads (i.e., each trace took approximately 11 thread-
seconds). Using an independent samples t-test, we show that
querying Mithra is significantly (p < 0.001) faster than AR-
SI.

Overall, Mithra does require an upfront training cost that
AR-SI does not; given a trained model, oracle querying for
Mithra is approximately 10X faster than AR-SI.

5.7 Wider Applicability

To show that Mithra is not limited to a single system
(i.e., ArduPilot), we demonstrate Mithra on the F1/10 plat-
form [87], shown in Figure 11. F1/10 is an open-source,

13

(a) (b)

Fig. 11. (a) The F1/10 vehicle; one tenth of the size of a real
Formula 1 race car. (b) A simulated race track with four obstacle
cones (orange), the F1/10 vehicle (red), and the range covered
by the vehicle’s sensors (blue). The vehicle follows the inside or
outside walls to navigate through the track counter-clockwise,
and avoids obstacles.

autonomous racing cyber-physical platform, one tenth of the
size of a real Formula 1 racing car, that is designed to be used
as a testbed for research and education. We chose F1/10 as
an additional case study to demonstrate the applicability of
Mithra to a system built on top of the Robot Operating Sys-
tem [92], the most popular robotics development platform,
sometimes referred to as the “Linux of Robotics” [111].

In this experiment, we use Mithra to learn an oracle
for the wall-following command of F1/10,11 in which the
vehicle uses its sensors to complete laps around the race
track without crashing. The wall-following command takes
a single parameter that specifies whether the vehicle should
follow the inside or outside walls of the track. The vehicle
will indefinitely complete laps around the track in a counter-
clockwise direction, remaining close to desired wall, until
instructed to stop by the user. Since “missions” for this sys-
tem consist of a single command of indefinite duration, we
impose a wall-clock time limit when collecting traces. These
traces consist of seven state variables, describing the vehi-
cle’s position and orientation at each point of observation.

We assess Mithra on F1/10 using a similar approach
to our evaluation on ArduPilot, outlined in Section 5.2, by
constructing a benchmark. We use simulation to construct a
training dataset of 75 unlabeled traces, covering both inside
and outside wall-following behaviors. Note that we collect
substantially fewer training traces for F1/10 compared to
ArduPilot since the latter has a greater set of commands
and parameters. To construct an evaluation dataset, we first
automatically inject 234 faults into the F1/10 source code us-
ing four mutation operators: Wrong Arithmetic Operation,
Wrong Value Assigned to a Variable, Missing Parentheses,
and Wrong Logic Clause. We use Comby [107], a tool for
searching and changing code structure, to apply the muta-
tions to the code. We use artificial faults for evaluation since
F1/10 does not have a rich enough development history to
extract historical faults. After running the command with
both parameters on the syntactically valid, non-crashing
bugs and collecting the traces, we manually identify the
mutants that led to failure (i.e., crashing into obstacles). We

11. https://github.com/linklab-uva/f1tenth_gtc_tutorial

identify 153 mutants and produce 261 faulty traces. To en-
sure a balanced evaluation dataset, we collect an additional
261 traces using the unmodified F1/10 system.

We run Mithra with rarity threshold ρ = 5, maximum
number of clusters kmax = 15, and without feature selection,
and repeat the experiment with 20 seeds. Mithra reaches its
highest median accuracy (81.0%) when θ = 1, with me-
dian precision and recall of 84.6% and 74.9%, respectively.
By comparison, AR-SI achieves its highest median accuracy
(51.3%), with a median precision and recall of 51.7% and
37.1%, respectively, when p = 10.

The high performance of Mithra on F1/10 may be ex-
plained by how erroneous behaviors in this system manifest.
In most cases, the vehicle misbehaves smoothly, and does
not necessarily show sudden, unexpected changes; rather,
it slowly navigates along the wrong path. Mithra detects
that the behavior does not match previously identified be-
havioral clusters. In contrast, AR-SI only detects erroneous
behaviors that involve abrupt changes, which may explain
why AR-SI performs poorly on F1/10.

Overall, these results demonstrate the wider applicabil-
ity of Mithra by showing that Mithra can be successfully
applied to another system (i.e., F1/10).

5.8 Threats to Validity

Construct Are we asking the right questions?: We as-
sess Mithra’s effectiveness as an oracle learning technique
by measuring how accurately its generated oracles discrim-
inate between correct and erroneous system behavior. We
use precision, recall, accuracy, and querying time as met-
rics of performance, and compare to AR-SI, a state-of-the-
art oracle learning approach that operates under the same
assumptions, as a baseline. To gain a deeper insight into how
Mithra works, we evaluate how each of its individual steps
contribute to the overall effectiveness.

Internal Did we skew the accuracy of our results with
how we collected and analyzed information?: In many CPSs,
executing faulty lines and triggering a bug does not guar-
antee that the bug will manifest. However, many of our
bugs are associated with a bug report on ArduPilot’s issue
tracker and describe missions that manifest the bug. We cre-
ate mission templates based on the bug reports and our own
understanding of the bugs, and generate random missions
from those templates. The mission templates are a source of
internal validity.

As the source code of AR-SI was not available to us,
we implemented our own version of AR-SI based on the
description provided in the paper [45]. Our implementation
of AR-SI represents a potential threat to internal validity. We
release our implementation of AR-SI as part of our replica-
tion package.

External Do our results generalize?: In theory, our ap-
proach is applicable to any CPS that logs its telemetry data.
However, we only evaluate on two instances of such sys-
tems. We pick ArduPilot as a fairly complex and highly
popular system that is widely used as a representative of real
CPSs in prior work [45], [120], [5], [109], [66], and we pick
F1/10 as system built on top of the popular Robot Operating
System [92].

https://github.com/linklab-uva/f1tenth_gtc_tutorial

14

In this paper we only evaluated Mithra on traces col-
lected over command-based mission executions, since com-
mands trigger autonomous control of the system that is ex-
pected to perform a set of actions. In other words, using the
mission planner and providing a set of commands, we focus
on the system’s behavior in autonomous mode (i.e., auto
mode in ArduPilot) rather than manual control. In theory,
Mithra can be adapted to handle continuous inputs (e.g.,
controlling the quadcopter with joystick), using techniques
such as sliding windows [118], and meta-featuring [49].
However, we leave investigating applicability of Mithra on
continuous commands to future work.

Although Mithra is agnostic to the source of its traces and
can be applied to field traces, we do not evaluate Mithra on
field traces and leave that for future work.

Replicability Can others replicate our results?: To allow
others to inspect, replicate, and extend our experiments, we
provide a replication package for our study, containing our
evaluation datasets and the source code for Mithra and our
implementation of AR-SI.

Conclusion Did we draw correct conclusions from our
data?: From our experiments, we conclude that Mithra out-
performs AR-SI according to several important measures of
performance: precision, recall, accuracy, and querying time.
We measure performance on a balanced set of 466 execution
traces, representing a variety of operating conditions (e.g.,
mission, particular bug), and use an appropriate one-sided
non-parametric test (Mann-Whitney U) to demonstrate sta-
tistically significant improvement.

6 ASSUMPTIONS AND LIMITATIONS

In this section, we discuss the assumptions made by Mithra,
and the limitations that affect our approach as a result of
making these assumptions.

Anomalous-yet-correct behavior: Our approach, like
others, treats anomalous behavior as erroneous, and com-
mon erroneous behavior as correct [65], [85], [33], [11], [25],
[50], [116]. However, anomalous behavior also includes cor-
ner cases and rare behaviors that are not observed during
training, which are not necessarily erroneous, and erroneous
behavior can be observed in the training data. Even though
reporting the anomalous-yet-correct behaviors as erroneous
is not ideal, and can result in false-positives, it can inform the
developers of under-tested functionality. In addition, most
systems typically perform as expected [32], as it is easier for
developers to detect and debug an erroneous behavior that
is observed frequently.

Dependency on training data: Overall, the perfor-
mance of our approach depends on its training data, a lim-
itation it shares with other dynamic model learning tech-
niques [65], [85], [33], [11]. If the provided traces do not pro-
vide sufficient coverage of the unique behaviors of the robot,
our approach will fail to identify those behaviors. However,
generating a diverse set of training data is an orthogonal
problem we leave to future work. Additionally, even though
Mithra works on any CPSs that generates telemetry logs, it
is limited by the variables that are recorded in these logs,
and the extent of which these variables truly represent the
system’s behaviors. For example, if the telemetry logs of a
smart thermostat does not include data on the environment’s

temperature, Mithra is not capable of truly capturing the
system’s behavior.

Sequential, synchronous execution: Our approach
assumes sequential execution of commands and cannot han-
dle asynchronous or concurrent executions. This assumption
limits the applicability of Mithra on systems that require
multi-process, asynchronous operation, which is prevalent
among CPSs. Taking ideas from testing distributed sys-
tems [18], [17], we can include such traces in our approach
in the future.

7 FUTURE WORK

In this section, we discuss opportunities for future work, in-
cluding potential improvements to the approach and oppor-
tunities for additional application and further evaluation.

Application, Usability, and Further Evaluation: In
this paper, we applied Mithra to two real-world, exemplar
systems, and evaluated Mithra’s ability to accurately distin-
guish between CORRECT and ERRONEOUS traces. However,
we did not evaluate or explore the usability of our approach
in terms of its ability to to help developers to identify, lo-
cate, and address faults as part of a larger quality assurance
approach. For example, to aid in debugging an observed fail-
ure, Mithra could be adapted to provide the user with infor-
mation about the variables within trace that contribute most
to its ERRONEOUS label (e.g., an altitude is abnormally large).
As such an investigation would require human studies that
are beyond the scope of this paper, we leave exploration of
this possibility to future work, along with an exploration
of how Mithra can be integrated into fault localization and
automated program repair approaches.

In this work, we limited the evaluation of our approach
to a single configuration of the system. Mithra can naively
handle different configurations by learning a different set
of clusters under each configuration. However, such an ap-
proach would almost certainly be prohibitive in terms of
the amount of required training data and the time taken
by clustering. Alternatively, configuration variables could
be injected into the traces themselves during clustering, al-
lowing meaningful differences due to configuration to be
identified during feature selection and incorporated into the
learned clusters. Given the considerable challenges involved
in efficiently exploring configuration spaces [57], we leave
an exploration of how Mithra can be adapted to account for
such variability to future work.

Another important factor in the input space of CPSs is the
operating environment. However, capturing and compactly
encoding relevant environment features within a trace is a
difficult research problem that requires novel ideas. In this
work, we evaluated Mithra without directly including any
information about the simulated environment (e.g., weather,
obstacles, terrain). Some of this information is easier to in-
clude (e.g., barometric pressure, wind speed), while other
pieces of information are trickier to represent (e.g., the po-
sition and heading of nearby aircraft). This limits Mithra’s
ability to relate certain learned behaviors to specific envi-
ronment factors. In other words, when Mithra is applied to
training traces that has been collected in different environ-
ments, it can recognize those different behaviors (e.g., behav-
ior A that is only performed in presence of strong winds), but

15

Mithra is unable to relate these behaviors to correlated en-
vironmental factors. If, for example, behavior A incorrectly
occurs in a non-windy environment, Mithra would not be
able to mark it as ERRONEOUS. Additionally, effectively ex-
ploring the environment space, and automatically evolving
the simulated environments in such a way that they expose
the system to more diverse scenarios is an important area
that needs to be investigated in the future [80], [112], [34],
[70], [60].

Improving Mithra: Throughout the paper, we have
highlighted several opportunities to further improve various
aspects of Mithra, including alternative feature selection and
normalization approaches, and automating the discovery of
derived variables. Below, we briefly discuss two additional
opportunities for improvement: incremental training and
developer-assisted cluster validation.

In its current form, the clusters found by Mithra can-
not be evolved to incorporate newly collected data: The
training process must be repeated from scratch with an
updated dataset to recompute the clusters such that they
accurately reflect any new, modified, or removed behaviors
of the system. This limitation can make Mithra expensive to
practically deploy on frequently evolving systems. In future
studies, we intend to explore whether Mithra can efficiently
reuse and evolve previously identified clusters to account for
newly collected data.

The accuracy and utility of Mithra could be improved
by using a semi-automated approach that uses feedback
from the developer to confirm the correctness of discovered
clusters and identify small clusters that correspond to rare,
erroneous behavior exhibited in the training set. This could
take place by, for example, presenting several representative
traces from each of the identified clusters to the user and
asking the user whether those traces are indeed CORRECT or
ERRONEOUS. This additional step would help to overcome
Mithra’s limitations in identifying frequent-but-erroneous
and rare-but-correct behaviors during training.

8 RELATED WORK

Mithra is most closely related to prior work on anomaly
detection in cyberphysical systems [26], [37], [81], [43], [46],
[88], [108], [120]. We have already positioned Mithra with
respect to AR-SI [45] in detail in Section 5.1. Chen et al. [25]
build models by combining mutation testing and machine
learning: they generate faulty versions (mutants) of the
tested system and then learn SVM-based models using su-
pervised learning over the resultant data traces correspond-
ing to system execution. They evaluate on a model of a
physical water sanitation plant. Our system improves on this
prior work by obviating the expensive mutant-generation
step by virtue of making use of unsupervised learning tech-
niques. Ghafouri et al. [38] show that common supervised
approaches in this context are vulnerable to stealthy attacks.
An unsupervised technique [50] evaluated on the same treat-
ment plant model trains a Deep Neural Net (DNN) to iden-
tify outliers (similar in spirit to our approach), but cannot
be applied to time series data, a key concern in many CPSs.
Ye et al. [116] use a multivariate quality control technique to
detect intrusions by building a long-term profile of normal
activities in information systems and using the norm profile

to detect anomalies. However, it is a parametric technique
and is not fully automated.

To generate test oracles for CPSs, Menghi et al. [77]
propose an approach that automatically translates CPS re-
quirements specified in a logic-based language into test
oracles specified in Simulink. However, writing the speci-
fications for requirements of a CPS is difficult and error-
prone [39]. Other approaches target the detection of par-
ticular attack classes specifically. Choi et al. [27] present a
technique that infers control invariants to identify external
physical attacks against robotic vehicles; its models combine
knowledge about a vehicle’s physical properties and control
algorithms, as well as the laws of physics. Like AR-SI, it
uses system identification (SI) to detect malicious attacks on
CPSs; however, it requires a training step. Alippi et al. [12]
learn Hidden Markov Models of highly correlated sensor
data that are then used to find sensor faults. Abbaspour et
al. [3] train adaptive neural networks over faults injected
into sensor data to detect fault data injection attacks in an
unmanned aerial vehicle. Our approach does not target a
particular class of failures, and can be used to detect both
sensor faults and attacks on the system.

Other techniques infer invariants or finite state models
describing correct software, which is known as dynamic
specification mining [51], [33], [31], [82], [83], [40], [114], [65],
[17], [19], [85], [100], [64], [11]. Most require source code ac-
cess or instrumentation, and none are suitable for time series
data. Techniques like Daikon [33] and its numerous succes-
sors [31], [82], [83], [40] learn source- or method-level data
invariants rather than models of correct execution behavior.
Jiang et al. [51] use Daikon on messages that are passed
between different processes in ROS systems to learn invari-
ants that apply to the messages. Techniques like Texada [65]
and Perracotta [114] do learn temporal properties between
events but do not model or learn temporal data properties, a
key primitive in CPS execution (Artinali [11] comes closest to
this goal, learning event ordering and data properties within
an event). Other techniques use console logs generated by
the system as the source for mining invariants and detecting
anomalies [102], [14], [67], [113]. Overall, such techniques
target orthogonal use cases and systems as compared to our
context.

As another way of approaching the oracle problem for
CPSs, studies have used metamorphic testing to observe
the relations between the inputs and outputs of multiple
executions of a CPS [66], [119], [103]. Lindvall at al. [66]
exploit tests with same expected output according to a given
model to test autonomous systems. Zhou and Sun [119] use
metamorphic testing to specifically detect software errors
from the LiDAR sensor of autonomous vehicles. Tian et
al. [103] introduce DeepTest, a testing tool for automatically
detecting erroneous behaviors of DNN-driven vehicles. As
an oracle, they use metamorphic testing by checking that
properties like steering angle of an autonomous vehicle re-
main unchanged in different conditions such as different
weather or lighting.

9 CONCLUSION

In this paper, we introduce Mithra, an automated tool that
demonstrates a three-step multivariate time series clustering

16

approach as an effective means of generating oracles for
cyberphysical systems. As part of our evaluation on a widely
used robotics platform, we show that Mithra identifies a
higher number of faulty executions than AR-SI, a state-of-
the-art oracle generation technique for CPSs, and does so
with a higher level of confidence. We show that Mithra
is generally more reliable and may be used to provide an
oracle for automated, simulation-based testing as part of a
continuous integration and deployment workflow.

ACKNOWLEDGMENT

This research was partially supported by AFRL (#FA8750-
15-2-0075), DARPA (#FA8750-16-2-0042), and the NSF
(#CCF-1750116); the authors are grateful for their support.

REFERENCES

[1] About ArduPilot. Accessed: 2020-09-02.
[2] Schiaparelli landing investigation makes progress.

http://www.esa.int/Our_Activities/Human_and_Robotic_
Exploration/Exploration/ExoMars/Schiaparelli_landing_
investigation_makes_progress, 2016. Accessed: 2020-09-02.

[3] Alireza Abbaspour, Kang K Yen, Shirin Noei, and Arman Sar-
golzaei. Detection of fault data injection attack on UAV using
adaptive neural network. Procedia computer science, 95:193–200,
2016.

[4] Hervé Abdi and Lynne J. Williams. Principal component analysis.
WIREs Computational Statistics, 2(4):433–459, 2010.

[5] Mikhail Afanasov, Aleksandr Iavorskii, and Luca Mottola. Pro-
gramming support for time-sensitive adaptation in cyberphysical
systems. ACM SIGBED Review, 14(4):27–32, 2018.

[6] Sheeva Afshan, Phil McMinn, and Mark Stevenson. Evolving
readable string test inputs using a natural language model to
reduce human oracle cost. In International Conference on Software
Testing, Verification and Validation, ICST ’13, pages 352–361, 2013.

[7] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher
Steven Timperley. Simulation for robotics test automation: Devel-
oper perspectives. In International Conference on Software Testing,
Validation and Verification, ICST ’21, 2021.

[8] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher
Steven Timperley. A study on challenges of testing robotic sys-
tems. In International Conference on Software Testing, Validation and
Verification, ICST ’20, pages 96–107, 2020.

[9] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah.
Time-series clustering–a decade review. Information Systems,
53:16–38, 2015.

[10] Saeed Aghabozorgi and Teh Ying Wah. Clustering of large time
series datasets. Intelligent Data Analysis, 18(5):793–817, 2014.

[11] Maryam Raiyat Aliabadi, Amita Ajith Kamath, Julien Gascon-
Samson, and Karthik Pattabiraman. ARTINALI: dynamic invari-
ant detection for cyber-physical system security. In Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE ’17, pages 349–361,
2017.

[12] Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. Model-
free fault detection and isolation in large-scale cyber-physical sys-
tems. Transactions on Emerging Topics in Computational Intelligence,
1(1):61–71, 2016.

[13] Anthony Bagnall and Gareth Janacek. Clustering time series with
clipped data. Machine Learning, 58(2-3):151–178, 2005.

[14] Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, and
Ke Zhang. Execution anomaly detection in large-scale systems
through console log analysis. Journal of Systems and Software,
143:172–186, 2018.

[15] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz,
and Shin Yoo. The oracle problem in software testing: A survey.
Transactions on Software Engineering, 41(5):507–525, 2015.

[16] Donald J Berndt and James Clifford. Using dynamic time warping
to find patterns in time series. In Workshop on Knowledge Discovery
in Databases, volume 10 of KDD ’94, pages 359–370, 1994.

[17] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind
Krishnamurthy. Inferring models of concurrent systems from
logs of their behavior with csight. In International Conference on
Software Engineering, ICSE ’14, pages 468–479, 2014.

[18] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst.
Debugging distributed systems. Communications of the ACM,
59(8):32–37, 2016.

[19] Alan W Biermann and Jerome A Feldman. On the synthesis of
finite-state machines from samples of their behavior. Transactions
on Computers, 100(6):592–597, 1972.

[20] Lionel C Briand, Yvan Labiche, and Michal M Sówka. Automated,
contract-based user testing of commercial-off-the-shelf compo-
nents. In International Conference on Software Engineering, ICSE ’06,
pages 92–101, 2006.

[21] Manfred Broy. Engineering cyber-physical systems: Challenges
and foundations. In Complex Systems Design & Management, pages
1–13. Springer, 2013.

[22] Robert N. Charette. Nissan recalls nearly 1 million cars for air bag
software fix. IEEE Spectrum, 2014.

[23] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroquín. Searching in metric spaces. Computing
Surveys, 33(3):273–321, 2001.

[24] Yunliang Chen, Lizhe Wang, Fangyuan Li, Bo Du, Kim-
Kwang Raymond Choo, Houcine Hassan, and Wenjian Qin. Air
quality data clustering using epls method. Information Fusion,
36:225–232, 2017.

[25] Yuqi Chen, Christopher M. Poskitt, and Jun Sun. Learning from
mutants: Using code mutation to learn and monitor invariants of
a cyber-physical system. In Symposium on Security and Privacy,
S&P ’18, pages 648–660, 2018.

[26] Long Cheng, Ke Tian, and Danfeng Daphne Yao. Orpheus:
Enforcing cyber-physical execution semantics to defend against
data-oriented attacks. In Annual Computer Security Applications
Conference, ACSAC ’17, pages 315–326, 2017.

[27] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu,
Xiangyu Zhang, Dongyan Xu, and Xinyan Xinyan. Detecting
attacks against robotic vehicles: A control invariant approach.
In Conference on Computer and Communications Security, CCS ’18,
pages 801–816, 2018.

[28] Mariana Sátiro Coelho. Patterns in financial markets: Dynamic time
warping. PhD thesis, NSBE-UNL, 2012.

[29] Patricia Cohen, Stephen G West, and Leona S Aiken. Applied
multiple regression/correlation analysis for the behavioral sciences. Psy-
chology Press, 2014.

[30] Thomas M Cover. Elements of information theory. John Wiley &
Sons, 1999.

[31] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis.
Dysy: Dynamic symbolic execution for invariant inference. In
International Conference on Software Engineering, ICSE ’08, pages
281–290. ACM, 2008.

[32] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and
Benjamin Chelf. Bugs as deviant behavior: A general approach
to inferring errors in systems code. Operating Systems Review,
35(5):57–72, 2001.

[33] M D Ernst, J H Perkins, P J Guo, S McCamant, C Pacheco, M S
Tschantz, and C Xiao. The Daikon System for Dynamic Detection
of Likely Invariants. Science of Computer Programming, 69(1-3):35–
45, 2007.

[34] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu
Yue, Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia.
Scenic: a language for scenario specification and scene generation.
In Conference on Programming Language Design and Implementation,
PLDI ’19, pages 63–78, 2019.

[35] Ada Wai-Chee Fu, Eamonn Keogh, Leo Yung Lau, Chotirat Ann
Ratanamahatana, and Raymond Chi-Wing Wong. Scaling and
time warping in time series querying. International Journal on Very
Large Data Bases, 17(4):899–921, 2008.

[36] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically
testing self-driving cars with search-based procedural content
generation. In International Symposium on Software Testing and
Analysis, ISSTA ’19, pages 318–328, 2019.

[37] Amin Ghafouri, Aron Laszka, Abhishek Dubey, and Xenofon
Koutsoukos. Optimal detection of faulty traffic sensors used in
route planning. In International Workshop on Science of Smart City
Operations and Platforms Engineering, SCOPE ’17, pages 1–6, 2017.

[38] Amin Ghafouri, Yevgeniy Vorobeychik, and Xenofon Kout-
soukos. Adversarial regression for detecting attacks in cyber-

http://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Human_and_Robotic_Exploration/Exploration/ExoMars/Schiaparelli_landing_investigation_makes_progress

17

physical systems. In International Conference on Artificial Intelli-
gence, ICOAI ’18, pages 3769–3775, 2018.

[39] Christoph Gladisch, Thomas Heinz, Christian Heinzemann, Jens
Oehlerking, Anne von Vietinghoff, and Tim Pfitzer. Experience
paper: Search-based testing in automated driving control appli-
cations. In International Conference on Automated Software Engineer-
ing, ASE ’19, pages 26–37. IEEE, 2019.

[40] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. Inferring
and asserting distributed system invariants. In International Con-
ference on Software Engineering, ICSE ’18, pages 1149–1159, 2018.

[41] Jie Gu and Xiaomin Jin. A simple approximation for dynamic
time warping search in large time series database. In International
Conference on Intelligent Data Engineering and Automated Learning,
IDEAL ’06, pages 841–848, 2006.

[42] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts
and techniques. 2011.

[43] Yoshiyuki Harada, Yoriyuki Yamagata, Osamu Mizuno, and Eun-
Hye Choi. Log-based anomaly detection of cps using a statistical
method. In International Workshop on Empirical Software Engineer-
ing in Practice, IWESEP ’17, pages 1–6, 2017.

[44] Florian Hauer, Alexander Pretschner, Maximilian Schmitt, and
Markus Groetsch. Industrial evaluation of search-based test gen-
eration techniques for control systems. In International Symposium
on Software Reliability Engineering Workshops, ISSREW’17, pages 5–
8. IEEE, 2017.

[45] Zhijian He, Yao Chen, Enyan Huang, Qixin Wang, Yu Pei, and
Haidong Yuan. A system identification based oracle for control-
cps software fault localization. In International Conference on Soft-
ware Engineering, ICSE ’19, pages 116–127, 2019.

[46] Michael W Hofbaur and Brian C Williams. Mode estimation of
probabilistic hybrid systems. In International Workshop on Hybrid
Systems: Computation and Control, HSCC ’02, pages 253–266, 2002.

[47] Harold Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of Educational Psychology,
24(6):417, 1933.

[48] Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi,
Yoshihiro Kobayashi, and Georgios Fainekos. Towards formal
specification visualization for testing and monitoring of cyber-
physical systems. In International Workshop on Design and Imple-
mentation of Formal Tools and Systems, DIFTS ’14, 2014.

[49] Min Hu, Zhiwei Ji, Ke Yan, Ye Guo, Xiaowei Feng, Jiaheng Gong,
Xin Zhao, and Ligang Dong. Detecting anomalies in time series
data via a meta-feature based approach. IEEE Access, 6:27760–
27776, 2018.

[50] Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christopher M Poskitt,
and Jun Sun. Anomaly detection for a water treatment system
using unsupervised machine learning. In International Conference
on Data Mining Workshops, ICDMW ’17, pages 1058–1065, 2017.

[51] Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. Inferring
and monitoring invariants in robotic systems. Autonomous Robots,
41(4):1027–1046, April 2017.

[52] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and
Robert Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In International Conference on Software
Engineering, ICSE ’13, pages 672–681, 2013.

[53] Stephen C. Johnson. Hierarchical clustering schemes. Psychome-
trika, 32(3):241–254, 1967.

[54] Tamer Kahveci and Ambuj Singh. Variable length queries for time
series data. In International Conference on Data Engineering, ICDE
’01, pages 273–282, 2001.

[55] Tamer Kahveci, Ambuj Singh, and Aliekber Gurel. Similarity
searching for multi-attribute sequences. In International Conference
on Scientific and Statistical Database Management, SSDBM ’02, pages
175–184, 2002.

[56] Aaron Kane, Thomas Fuhrman, and Philip Koopman. Monitor
based oracles for cyber-physical system testing: Practical experi-
ence report. In International Conference on Dependable Systems and
Networks, DSN ’14, pages 148–155, 2014.

[57] Christian Kästner, Alexander Von Rhein, Sebastian Erdweg, Jonas
Pusch, Sven Apel, Tillmann Rendel, and Klaus Ostermann. To-
ward variability-aware testing. In International Workshop on
Feature-Oriented Software Development, pages 1–8. ACM, 2012.

[58] Leonard Kaufmann and Peter Rousseeuw. Clustering by means of
medoids. Data Analysis based on the L1-Norm and Related Methods,
pages 405–416, 01 1987.

[59] Eamonn Keogh. Exact indexing of dynamic time warping. In
International Conference on Very Large Data Bases, VLDB ’02, pages
406–417, 2002.

[60] Florian Klück, Yihao Li, Mihai Nica, Jianbo Tao, and Franz
Wotawa. Using ontologies for test suites generation for auto-
mated and autonomous driving functions. In International Sym-
posium on Software Reliability Engineering Workshops, ISSREW ’18,
pages 118–123. IEEE, 2018.

[61] Terry K. Koo and Mae Y. Li. A Guideline of Selecting and Report-
ing Intraclass Correlation Coefficients for Reliability Research.
Journal of Chiropractic Medicine, 15(2):155–163, 2016.

[62] Nathan P Kropp, Philip J Koopman, and Daniel P Siewiorek. Au-
tomated robustness testing of off-the-shelf software components.
In International Symposium on Fault-Tolerant Computing, pages 230–
239, 1998.

[63] Edward A Lee. Cyber physical systems: Design challenges. In
International Symposium on Object and Component-Oriented Real-
Time Distributed Computing, ISORC ’08, pages 363–369, 2008.

[64] Caroline Lemieux. Mining temporal properties of data invariants.
In International Conference on Software Engineering, ICSE ’15, pages
751–753, 2015.

[65] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General
LTL specification mining. In International Conference on Automated
Software Engineering, ASE ’15, pages 81–92, 2015.

[66] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and
Christoph Schulze. Metamorphic model-based testing of
autonomous systems. In International Workshop on Metamorphic
Testing, MET ’17, pages 35–41, 2017.

[67] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li.
Mining invariants from console logs for system problem detec-
tion. In USENIX Annual Technical Conference, pages 1–14, 2010.

[68] Pablo Loyola, Matt Staats, In-Young Ko, and Gregg Rothermel.
Dodona: automated oracle data set selection. In International
Symposium on Software Testing and Analysis, ISSTA ’14, pages 193–
203, 2014.

[69] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon,
and Michael Fisher. Formal specification and verification of au-
tonomous robotic systems: A survey. ACM Computing Surveys,
52(5):1–41, 2019.

[70] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner,
and Damien Zufferey. Paracosm: A language and tool for testing
autonomous driving systems. arXiv preprint arXiv:1902.01084,
2019.

[71] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. Automatic
detection of performance deviations in the load testing of large
scale systems. In International Conference on Software Engineering,
ICSE ’13, pages 1012–1021, 2013.

[72] John C Mankins. Technology readiness levels. White Paper, April,
6(1995):1995, 1995.

[73] H. B. Mann and D. R. Whitney. On a test of whether one of
two random variables is stochastically larger than the other. The
Annals of Mathematical Statistics, 18(1):50–60, 1947.

[74] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas
Bruckmann. Automated test suite generation for time-continuous
simulink models. In International Conference on Software Engineer-
ing, ICSE’16, pages 595–606, 2016.

[75] Phil McCausland. Self-driving uber car that hit and killed woman
did not recognize that pedestrians jaywalk. NBC News.

[76] Phil McMinn, Mark Stevenson, and Mark Harman. Reducing
qualitative human oracle costs associated with automatically gen-
erated test data. In International Workshop on Software Test Output
Validation, STOV ’10, pages 1–4, 2010.

[77] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C
Briand. Generating automated and online test oracles for
simulink models with continuous and uncertain behaviors. In
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/FSE ’19,
pages 27–38, 2019.

[78] Swarup Mohalik, Ambar A Gadkari, Anand Yeolekar,
KC Shashidhar, and S Ramesh. Automatic test case generation
from simulink/stateflow models using model checking.
International Conference on Software Testing, Verification and
Reliability, 24(2):155–180, 2014.

[79] Galen E. Mullins, Paul G. Stankiewicz, and Satyandra K. Gupta.
Automated generation of diverse and challenging scenarios for
test and evaluation of autonomous vehicles. In International Con-

18

ference on Robotics and Automation, ICRA ’17, pages 1443–1450,
2017.

[80] Galen E Mullins, Paul G Stankiewicz, R Chad Hawthorne, and
Satyandra K Gupta. Adaptive generation of challenging scenarios
for testing and evaluation of autonomous vehicles. Journal of
Systems and Software, 137:197–215, 2018.

[81] Patric Nader, Paul Honeine, and Pierre Beauseroy. lp-norms in
one-class classification for intrusion detection in scada systems.
Transactions on Industrial Informatics, 10(4):2308–2317, 2014.

[82] ThanhVu Nguyen, Matthew B. Dwyer, and Willem Visser. Symin-
fer: inferring program invariants using symbolic states. In Interna-
tional Conference on Automated Software Engineering, ASE ’17, pages
804–814, 2017.

[83] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and
Stephanie Forrest. Using dynamic analysis to generate disjunctive
invariants. In International Conference on Software Engineering,
ICSE ’14, pages 608–619, 2014.

[84] Andrei Novikov. Pyclustering: Data mining library. Journal of
Open Source Software, 4(36):1230, 2019.

[85] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Hal-
bert, Marc Palyart, Ivan Beschastnikh, and Yuriy Brun. Behavioral
resource-aware model inference. In International Conference on
Automated Software Engineering, ASE ’14, pages 19–30, 2014.

[86] Sean O’Kane. Boeing finds another software problem on the 737
max. The Verge, 2020.

[87] Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack
Harkins, Chris Kao, Yash Vardhan Pant, Rahul Mangharam, Dip-
shil Agarwal, Madhur Behl, Paolo Burgio, and Marko Bertogna.
F1/10: An open-source autonomous cyber-physical platform,
2019.

[88] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. Cyber-
physical attacks in power networks: Models, fundamental limita-
tions and monitor design. In Conference on Decision and Control,
CDC ’11, pages 2195–2201, 2011.

[89] Fabrizio Pastore, Leonardo Mariani, and Gordon Fraser. Crowdo-
racles: Can the crowd solve the oracle problem? In International
Conference on Software Testing, Verification and Validation, ICST ’13,
pages 342–351, 2013.

[90] Karl Pearson. On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901.

[91] André Platzer. Logical foundations of cyber-physical systems.
Springer, 2018.

[92] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an
open-source robot operating system. In International Conference on
Robotics and Autmation, volume 3 of ICRA ’09, page 5, 2009.

[93] Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths
about dynamic time warping data mining. In International Confer-
ence on Data Mining, ICDM ’05, pages 506–510, 2005.

[94] Giles Reger, Howard Barringer, and David Rydeheard.
Automata-based pattern mining from imperfect traces. SIGSOFT
Software Engineering Notes, 40(1):1–8, 2015.

[95] Clément Robert, Thierry Sotiropoulos, Hélène Waeselynck,
Jérémie Guiochet, and Simon Vernhes. The virtual lands of Oz:
testing an agribot in simulation. Empirical Software Engineering,
pages 1–30, 2020.

[96] Elias Rocklage, Heiko Kraft, Abdullah Karatas, and Jörg Seewig.
Automated scenario generation for regression testing of au-
tonomous vehicles. In International Conference on Intelligent Trans-
portation Systems, ITSC ’17, pages 476–483, 2017.

[97] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpre-
tation and validation of cluster analysis. Journal of Computational
and Applied Mathematics, 20:53–65, 1987.

[98] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-
Cushon, and Ciera Jaspan. Lessons from building static analysis
tools at google. Communications of the ACM, pages 58–66, 2018.

[99] Stan Salvador and Philip Chan. Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analysis,
11(5):561–580, 2007.

[100] Lukas Schmidt, Apurva Narayan, and Sebastian Fischmeister.
TREM: a tool for mining timed regular specifications from system
traces. In International Conference on Automated Software Engineer-
ing, ASE ’17, pages 901–906, 2017.

[101] Helena Skutkova, Martin Vitek, Petr Babula, Rene Kizek, and Ivo
Provaznik. Classification of genomic signals using dynamic time
warping. BMC bioinformatics, 14(10):S1, 2013.

[102] Yohen Thounaojam, Wiliam Setiawan, and Apurva Narayan.
Ma2df: A multi-agent anomaly detection framework. In Interna-
tional Conference on Systems, Man, and Cybernetics, SMC ’20, pages
30–36. IEEE, 2020.

[103] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
automated testing of deep-neural-network-driven autonomous
cars. In International Conference on Software Engineering, ICSE ’18,
pages 303–314, 2018.

[104] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz,
Jam Marcos Hernandez, and Claire Le Goues. Crashing simulated
planes is cheap: Can simulation detect robotics bugs early? In In-
ternational Conference on Software Testing, Verification and Validation,
ICST ’18, pages 331–342, 2018.

[105] Cumhur Erkan Tuncali. Search-based Test Generation for Automated
Driving Systems: From Perception to Control Logic. PhD thesis,
Arizona State University, 2019.

[106] Cumhur Erkan Tuncali, Theodore P. Pavlic, and Georgios
Fainekos. Utilizing S-TaLiRo as an automatic test generation
framework for autonomous vehicles. In International Conference on
Intelligent Transportation Systems, ITSC ’16, pages 1470–1475, 2016.

[107] Rijnard van Tonder and Claire Le Goues. Lightweight multi-
language syntax transformation with parser parser combinators.
In Conference on Programming Language Design and Implementation,
PLDI ’19, pages 363–378, 2019.

[108] Vandi Verma, Geoff Gordon, Reid Simmons, and Sebastian Thrun.
Real-time fault diagnosis [robot fault diagnosis]. Robotics & Au-
tomation Magazine, 11(2):56–66, 2004.

[109] Westley Weimer, Stephanie Forrest, Claire Le Goues, and Miryung
Kim. Cooperative, trusted software repair for cyber physical
system resiliency. Technical report, University of Virginia Char-
lottesville United States, 2018.

[110] Andreas Windisch. Search-based testing of complex simulink
models containing stateflow diagrams. In International Conference
on Software Engineering, ICSE’09, pages 395–398. IEEE, 2009.

[111] Keenan Wyrobek. The Origin Story of ROS, the Linux of Robotics,
Oct 2017. Accessed: 2020-09-02.

[112] Qin Xia, Jianli Duan, Feng Gao, Qiuxia Hu, and Yingdong He. Test
scenario design for intelligent driving system ensuring coverage
and effectiveness. International Journal of Automotive Technology,
19(4):751–758, 2018.

[113] Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael I Jordan. Detecting large-scale system problems by min-
ing console logs. In Symposium on Operating Systems Principles,
pages 117–132, 2009.

[114] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat,
and Manuvir Das. Perracotta: Mining temporal api rules from
imperfect traces. In International Conference on Software Engineer-
ing, ICSE ’06, pages 282–291, 2006.

[115] Kiyoung Yang and Cyrus Shahabi. A pca-based similarity mea-
sure for multivariate time series. In International Workshop on
Multimedia Databases, MMDB ’04, pages 65–74, 2004.

[116] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilbert.
Multivariate statistical analysis of audit trails for host-based in-
trusion detection. Transactions on computers, 51(7):810–820, 2002.

[117] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and
Roland Norgren. Understanding Uncertainty in Cyber-Physical
Systems: A Conceptual Model. In Modelling Foundations and Ap-
plications, pages 247–264. Springer, 2016.

[118] Tiancheng Zhang, Dejun Yue, Yu Gu, Yi Wang, and Ge Yu. Adap-
tive correlation analysis in stream time series with sliding win-
dows. Computers & Mathematics with Applications, 57(6):937–948,
2009.

[119] Zhi Quan Zhou and Liqun Sun. Metamorphic testing of driverless
cars. Communications of the ACM, 62(3):61–67, February 2019.

[120] Ehsan Zibaei, Sebastian Banescu, and Alexander Pretschner. Di-
agnosis of safety incidents for cyber-physical systems: A uav
example. In International Conference on System Reliability and Safety,
ICSRS ’18, pages 120–129, 2018.

19

Afsoon Afzal is a Software Engineer at Nuro
Inc. She received her PhD degree in Software
Engineering from the Carnegie Mellon University
in 2021. She is interested in applying automated
quality assurance methods, including automated
testing and repair to evolving and autonomous
systems. More information is available at: http:
//www.cs.cmu.edu/~afsoona.

Claire Le Goues is an Associate Professor in
the School of Computer Science at Carnegie
Mellon University, where she is primarily affil-
iated with the Institute for Software Research.
She received the BA degree in Computer Sci-
ence from Harvard University and the MS and
PhD degrees from the University of Virginia. She
received an NSF CAREER award. She is in-
terested in constructing high-quality systems in
the face of continuous software evolution, with a
particular interest in automatic error repair. More

information is available at: http://www.cs.cmu.edu/~clegoues.

Christopher Steven Timperley is a Systems
Scientist in the School of Computer Science at
Carnegie Mellon University. He received MEng
and PhD degrees in Computer Science from the
University of York. He is interested in automated
techniques that help developers to build, test,
and deploy high-quality software for robotic and
autonomous systems. More information is avail-
able at: http://www.christimperley.co.uk.

http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~clegoues
http://www.christimperley.co.uk

	Introduction
	Case Study
	Motivating Scenario
	ArduCopter's Architecture

	Clustering Multivariate Time Series
	Approach
	Overview
	Training Data
	Oracle Learning
	Oracle Querying
	Implementation

	Evaluation
	Baseline
	Experimental Methodology
	RQ1: Accuracy
	RQ2: State-of-the-art Comparison
	RQ3: Conceptual Validation
	RQ4: Time
	Wider Applicability
	Threats to Validity

	Assumptions and Limitations
	Future Work
	Related Work
	Conclusion
	References
	Biographies
	Afsoon Afzal
	Claire Le Goues
	Christopher Steven Timperley

