
A Study on Challenges of Testing Robotic Systems
Afsoon Afzal, Claire Le Goues, Michael Hilton and Christopher Steven Timperley

Carnegie Mellon University, Pittsburgh, PA
Email: afsoona@cs.cmu.edu, clegoues@cs.cmu.edu, mhilton@cmu.edu, ctimperley@cmu.edu

Abstract—Robotic systems are increasingly a part of everyday
life. Characteristics of robotic systems such as interaction with
the physical world, and integration of hardware and software
components, differentiate robotic systems from conventional
software systems. Although numerous studies have investigated
the challenges of software testing in practice, no such study has
focused on testing of robotic systems. In this paper, we conduct
a qualitative study to better understand the testing practices
used by the robotics community, and identify the challenges
faced by practitioners when testing their systems. We identify
a total of 12 testing practices and 9 testing challenges from
our participants’ responses. We group these challenges into 3
major themes: Real-world complexities, Community and standards,
and Component integration. We believe that further research on
addressing challenges described with these three major themes
can result in higher adoption of robotics testing practices, more
testing automation, and higher-quality robotic systems.

Index Terms—robotics testing; testing challenges; qualitative
study;

I. INTRODUCTION

Robots are systems that sense, process, and physically
react to information from the real world.1 In addition to
being heavily used in manufacturing and industrial settings,
robotic systems are now appearing in many important and
safety-critical domains such as health care, education, and
transportation. Increased interaction between these systems
and the public raises the risk of catastrophic failure. For
example, a fatal incident occurred in March 2018 in Tempe,
Arizona when a self-driving car struck a pedestrian [1].

Because of the associated dangers and cost of failures
in robotic systems, it is crucial that developers test these
systems extensively before deployment. However, robotic sys-
tems differ from conventional software in several important
dimensions [2]–[7]: (1) Robots are comprised of (unreliable
and non-determinstic) hardware, software, and physical com-
ponents [2], [3], [7]. (2) Robots interact with the physical
world via inherently noisy sensors and actuators, and are sen-
sitive to timing differences [7]. (3) Robots operate within the
practically boundless state space of reality, making emergent
behaviors (i.e., corner cases) difficult to predict [2]. (4) For
robotic systems, the notion of correctness is often inexact
and difficult to precisely specify [6]. These characteristics
introduce unique challenges for testing, such as the need to
either heavily abstract aspects of physical reality or conduct
extensive real-world field testing.

Many studies have investigated testing practices in soft-
ware development generally [8]–[12]. Several prior studies on

1Max Plank Institute: https://www.cis.mpg.de/robotics/

testing on Cyber-Physical Systems (CPS) [4]–[6], of which
robotic systems may be considered a subcategory [13], do
include certain robotic systems in the larger CPS context
(which includes non-robotics systems like networking systems
or power grids). However, none of these studies focuses specif-
ically on robotics, which are subject to system constraints that
do not apply to CPS broadly (such as a need for autonomy,
route planning, and mobility). Indeed, we are unaware of any
prior published work that has examined testing practices and
challenges in the field of robotics.

Overall, although testing is essential to software develop-
ment [14], the challenges unique to the domain mean that
testing for robotics specifically may pose particular and under-
studied challenges in both research and practice. Although nu-
merous studies have proposed frameworks and algorithms for
testing robotic systems [15]–[20], little attention has been paid
to investigating the challenges of testing in robotics in practice.
This has resulted in a gap in the research community’s ability
to engage with the challenges faced when testing robotics.

In this paper, we address this gap by studying testing
practices and challenges in robotics. We conduct a series of
qualitative interviews with 12 robotics practitioners from 11
robotics companies and institutions. Specifically, we investi-
gate the testing practices that are being used in the field of
robotics, and the challenges faced by roboticists when testing
their systems. We answer the following research questions:

• RQ1: What testing practices are currently being used by
roboticists?

• RQ2: What are the costs and barriers to designing and
writing tests for robotic systems?

• RQ3: What are the costs and barriers to running and
automating tests in robotic systems?

Having a better understanding of the current state of test-
ing in robotics, as well as the problems and concerns of
the robotics community regarding testing of robotic systems,
will guide researchers and practitioners to provide and apply
solutions that can ultimately result in higher-quality robotic
systems. Overall, we make the following contributions:

• We conduct in-depth interviews with 12 robotics practi-
tioners from 11 different robotics companies and institu-
tions, in which we ask about their testing practices and
challenges.

• We identify 12 testing practices used by robotics develop-
ers and test engineers, 4 challenges that they commonly
face when designing testing platforms and writing tests,
and 5 challenges that they face when running and au-

https://www.cis.mpg.de/robotics/


tomating tests.
• We identify and discuss three general themes of chal-

lenges in robotics testing that require attention from
the research community, and provide our overview and
suggestions on those challenges may be tackled.

II. RELATED WORK

Studies on testing in practice benefit both testing profes-
sionals, who can learn from the experiences of others, and re-
searchers, who observe the strengths and weaknesses of these
practices and can contribute to further progress. Qualitative
and quantitative studies can identify gaps in existing research,
and encourage the research community to address those gaps
by directing research efforts towards the identified problems.

A number of studies have investigated software testing prac-
tices broadly, and the associated challenges [8]–[12]. Rune-
son [8] conducted a large-scale survey on unit testing with
19 software companies, and identified unit test definitions,
strengths, and problems. Causevic et al. [9] qualitatively and
quantitatively study practices and preferences on contemporary
aspects of software testing. However, these studies did not
focus on testing challenges in robotics.

Although the results of many studies on CPSs also apply
to robotics, robotics is a subcategory of CPS [13]. For exam-
ple, wireless networks, and smart buildings are cyberphysical
systems that are not robotics systems. Robotics-specific chal-
lenges and constraints are thus not addressed by this type of
work.

Zheng et al. [21] overview verification and validation in
cyberphysical systems. They find significant research gaps in
addressing verification and validation of CPS, and that these
gaps potentially stand in the way of the construction of robust,
reliable and resilient mission-critical CPS. They also find that
developers lack trust in simulators; one of the main research
challenges they identify is integrated simulation.

Seshia et al. [5]. introduce a combination of characteristics
that define the challenges unique to the design automation of
CPSs. Marijan et al. [6] speculate over a range of challenges
involving testing of machine learning based systems. However,
this work does not conduct qualitative or quantitative studies to
confirm their hypotheses. Duan et al. [4] extract 27 challenges
for verification of CPSs by performing a large-scale meta-
analysis on papers published between 2006 to 2018. Even
though they identify verification challenges that the research
community is eager to solve, they do not provide information
on which practices are used by practitioners, and to what extent
the research has been deployed in practice.

Alami et al. [22] study the quality assurance practices of
the Robot Operating System (ROS)2 community by using
qualitative methods such as interviews, virtual ethnography,
and community reach-outs. They learn that implementation
and execution of QA practices in the ROS community are
influenced by social and cultural factors and are constrained
by sustainability and complexity. However, their results only

2https://ros.org

apply to a specific robotics framework and cannot be gener-
alized to non-ROS systems.

Luckcuck et al. [23] systematically survey the state of the
art in formal specification and verification for autonomous
robotics, and identified the challenges of formally specifying
and verifying (autonomous) robotic systems. Their study fo-
cuses on formal specification as a method of quality assurance
and does not provide information regarding other testing
practices within the wider field of robotics.

III. METHODOLOGY

Our goal in this study is to gain an in-depth under-
standing of existing testing practices and challenges within
the robotics industry. Inspired by established guidelines and
previous work [24]–[28], we conducted a series of semi-
structured interviews with robotics practitioners from a diverse
set of companies. We chose to perform interviews because
they are useful instruments for getting the story behind a
participant’s experiences, acquiring in-depth information on
a topic, and soliciting unexpected types of information [29],
[30]. We developed our interview script by performing a series
of iterative pilots.

We recruited our participants through a variety of means.
Our goal was to select participants from a broad range of po-
sitions and to sample across a diversity of industries, company
size, and experience. We recruited our first three participants
using convenience sampling. We recruited the rest of our
participants using snowball sampling and targeted messages
to developers that we found on LinkedIn and Twitter who had
the phrase “robotics engineer” in their profile.

Overall, we interviewed 12 robotics practitioners with a
variety of backgrounds and experiences. This practitioners
represent 11 robotics companies and institutions ranging from
small startups to large multi-national companies. A summary
of the relevant details of the participants of our study is
presented in Table I. After performing the interviews, we
determined that while P5 and P7 work at a company that
is heavily involved in robotics, both of the participants are
focused on non-robotics-related software development, and so
we removed them from our sample moving forward.

Interviews and coding: We conducted semi-structured
interviews that lasted between 30 to 60 minutes over the
phone, using video chat, or conducted face-to-face. We pre-
pared an interview script with detailed questions to provide
insight into our research questions, which we provide as
a supplement to this paper.3 A subset of questions on the
interview script are presented in Table II. However, we only
used the script to guide the interviews. We adjusted interview
questions based on the experience of the participant, to gain a
deeper understanding of their testing practices and challenges.
We took notes on interviewee responses, and recorded the
interviews with participant consent to validate our notes. We
then used a grounded, iterative approach to code our notes.
We first labeled responses based on their relevance to our

3https://doi.org/10.5281/zenodo.3625199

https://ros.org
https://doi.org/10.5281/zenodo.3625199


TABLE I
INTERVIEW PARTICIPANTS, THEIR EXPERIENCE WITH ROBOTICS, THEIR ROLE IN THE COMPANY OR INSTITUTION, TYPE AND SECTOR OF THEIR

COMPANY OR INSTITUTION, AND WHETHER THEIR TESTING PROCESS INCLUDES A DEDICATED QUALITY ASSURANCE TEAM.

Participant Company/Institute
ID Background Years in robotics Role Type Sector QA team?
P1 Software Engineering 6 Developer Startup Mobile Services 8
P2 Electrical Engineering > 10 Principal Engineer Academia Research & Development 8
P3 Embedded Software Engineering 2 Developer Multinational Company Autonomous Vehicle 4
P4 Mechanical & Robotics Engineering 5 Developer Research Lab Agriculture 8
P5 Software Engineering > 10 Test Engineer Multinational Company Industrial Automation 4
P6 Math & Physics > 10 Project Manager Startup Education 8
P7 Experimental Physics 7 Test Engineer Multinational Company Industrial Automation 4
P8 Mechanical Engineering & Math 5 Manager/Engineer Startup Cleaning 8
P9 Computer Science 4 Engineer Robotics contractor Research & Development 4
P10 Computer Science > 10 Research Engineer Academia Industrial Automation 8
P11 Computer Science & Math < 1 Software Engineer Multinational Company Industrial Automation 4
P12 Robotics Engineering > 10 CTO Startup Mobile Services 8

TABLE II
SAMPLE QUESTIONS ON THE INTERVIEW SCRIPT.

Pr
ac

tic
e • What are all the different types of testing you do?

• Can you describe your test running/writing process?
• How much of your testing is done for certification?
• Which types of tests find the most problems?

Te
st

in
g

C
ha

lle
ng

es

• What is difficult about writing tests?
• Have these difficulties ever made you giving up on
writing the tests at all?
• Is there any part of writing tests that is not difficult?
• What types of tests do you have the most
difficulty running?
• In your experience, is there anything that helps with
making it easier to run tests?
• For your tests that are not fully automated, why
are they not?
• What tools/frameworks/techniques do you use
to simplify running tests?
• Do you use simulation?

G
en

er
al

• What do you think is the most important bottleneck
in the way of testing in robotics?
• How do you think the difficulties of testing in
robotics differ from your other experiences in other
software development domains?

research questions. Then, we iteratively coded the notes based
on common themes, discussed the codes and redefined them.
We present these themes in Section IV.

Validation: To validate the results of our study and
conclusions, we sent a full draft of Sections IV- V to our par-
ticipants. We asked participants to inform us of their level of
agreement with our conclusions and to provide their thoughts
on our results. In total, six of the participants responded to our
request. Four responded in total agreement with the results.
The other two participants that responded provided specific
feedback on our interpretation of their responses, and we
incorporated their feedback into the final version of this paper.

IV. RESULTS

In this section, we discuss the results in response to our
research questions. We identify 12 testing practices in use by
roboticists, and 9 challenges for robotics testing.

A. RQ1: Testing practices in robotics

To determine the testing practices that are used in the
robotics industry, we asked our participants to describe their
own testing practices. In total, our participants reported 12
different testing practices, summarized in Table III. Given the
explorative nature of our study, we do not make any claim
about the popularity of the reported practices; rather, we aim to
identify the variety of testing methods that are used in robotics.
Below, we discuss a selection of identified practices, bolded
in Table III, in more detail.

(T1) Field testing: A full system test that happens in
an environment that is similar or identical to the intended
deployment environment can reveal many problems, as a robot
is exposed to real-world scenarios and input. According to our
participants, field testing is a common practice in robotics.
Several of our participants mentioned that they conduct field
testing frequently during both development and testing of
a robot. For example, P9 and P12 both mentioned one or
two-week long field testing events that take place after each
development cycle. P2 stated that they conduct field testing
once or twice a week.

(T2) Logging and playback: Logs that are collected
during the operation of a system contain important information
about system execution for testing, debugging, and develop-
ment of algorithms. Five of our participants reported that they
collect detailed logs during the operation of their systems.
Some use recorded logs for debugging and monitoring. For
example, P9 provided an example where their robot logs
whenever it resets, and they automatically process the logs
to ensure that no unexpected, silent reset took place during
the operation of the robot.

Logs can also be used to playback events and sensor data
(a.k.a. record-and-replay) by feeding input collected from
previous operations (either in the field or in simulation) to a
robot. For example, ROSBAG is a widely-used command-line
tool that records and replays messages for robots built using
ROS.4 P10 and P12, for example, use record-and-replay to

4http://wiki.ros.org/rosbag

http://wiki.ros.org/rosbag


TABLE III
A SUMMARY OF THE TESTING PRACTICES THAT WERE REPORTED BY PARTICIPANTS. PRACTICES IN BOLD ARE DISCUSSED IN MORE DETAIL IN THE TEXT.

ID Title Description Representative quote
T1 Field testing Full-system testing in a real-world environment that

shares similarities with the deployment environment.
“I’m really a proponent of test often, fail often. We do
field testing once or twice a week.” – P2

T2 Logging and playback The use of logged data, collected in the field, for the
purposes of testing, debugging, and development (a.k.a.
record and replay).

“There is an event logger, which will log if something
weird happens. When you do playback, if the test
engineer thinks things are wrong, they can manually say
what went wrong.” – P3

T3 Simulation testing Tests that are executed in a simulated environment that
can be used for both testing and development.

“We do have tests running in simulation. We use Gazebo.
We mostly run planning algorithm tests in there.” – P12

T4 Plan-based testing The practice of planning an adequate sequence of field
tests for validating that the system meets its requirements
given a fixed testing budget (e.g., time, hardware, cost).

“We have oral or written test plan. Test plan is created
in the design review.” – P2

T5 Compliance testing Testing for the purposes of determining whether a
system complies with certain standards.

“Government project prescribes testing. We have several
projects that have gone through certifications.” – P9

T6 Unit testing Small, automated tests for validating individual
code-level software components (i.e., functions).

“For smaller software modules, we do unit testing and
code coverage analysis.” – P12

T7 Performance testing Subjecting a system to various workloads to ensure that
it meets its functional (e.g., localization accuracy) and
non-functional requirements (e.g., timeliness, memory).

“Whenever we release a new version of the system, we
run a system test on it: check that performance on
ground truth data isn’t degraded.” – P4

T8 Hardware testing Testing for the purposes of assessing the quality and
integrity of hardware components prior to software
integration (e.g., testing sensors and cameras).

“We manually check every single robot in the factory
before it’s shipped. We check that firmware is correct,
IO ports are functional.” – P6

T9 Robustness testing Testing the system under extreme boundary conditions
(e.g., a malfunctioning sensor) that are usually
artificially injected to determine the safe operating limits
of the system.

“We do an automated test where the middleware spins
the system up, then runs endurance tests. The
middleware can specify certain commands from system.
This makes there be very little risk in the full system.” –
P9

T10 Regression testing Ensuring that changes to the system (e.g., the addition
of a new feature) do not negatively affect existing
functionality in an unintended way.

“We have an automated system that runs the tests
nightly. We get some false positives. It’s used as
regression testing: looking at changes between old and
new versions.” – P4

T11 Continuous integration The practice of continually and automatically rebuilding
the system and executing some portion of its tests (e.g.,
unit tests) as changes are made.

“It will build three projects and run tests. Since the
builds can take a long time, they push up AWS to build
and test.” – P1

T12 Test maintenance The practice of refactoring and maintaining tests to
eliminate false positives, flakiness and redundancy, and
to reflect changes to the requirements of the system.

“We maintain our tests fairly regularly. On a weekly
level.” – P11

collect test inputs and debug their robots. P2 mentioned using
record-and-replay to develop algorithms for their robots:

We often do not know why robots are making the
choices that they make. By playing back the data in
testing we can see why the robot made the choice it did,
and then tweak the algorithm to see how it changes the
robots behavior.

(T3) Simulation testing: Using simulated environments
(rather than real-world, physical environments) can benefi-
cially reduce the cost of testing and increase the opportunities
for test automation [31], [32]. A recent study by Timperley et
al. [31] suggests that many real-world robotics bugs could have
be reproduced and fixed in simulated environments. However,
few participants reported that they used simulation as part of
their testing process, even though all participants were aware
of the theoretical benefits of simulation. For instance, P12
specifically said:

Our best way to test [algorithmic modules that are very
dependent on input data] is through simulation, but we
don’t. We test in the real-world.

Participants report that simulation is sometimes used as a
tool during development, especially for high-level algorithms
such as planning. P2 mentioned that they use simulation to

create artificial scenarios while developing an algorithm. P9
said that their software team uses simulation to facilitate soft-
ware development before the hardware platform is available.

Although simulation testing provides additional opportuni-
ties for test automation, our participants rarely used simulation
for this purpose. Only P3 mentioned using simulation to some
extent for automated testing:

We have some simulation cluster, so we could setup a
script to run a simulation test automatically.

(T4) Plan-based testing: An outline and objectives for
testing can be specified in advance in order to manage and
guide testing. Test plans can be created based on different
criteria such as formally specified system requirements, and
recently added/modified features. P2, P8, and P9 all create a
system requirements list, which is used to ensure all compo-
nents of the system are covered by the tests. For example, P9
said:

We have a requirements list we edit with our sponsor.
We measure quality of tests against requirements cov-
erage, not code coverage.

However, in P3’s company, developers provide a test plan
and failure criteria to test engineers for newly added or
modified features.



(T5) Compliance testing: In many fields such as elec-
tronics, a certain level of testing is required for the pur-
pose of certification.5 In robotics, there are a number of
standards and certifications in place for sub-fields such as
autonomous vehicles [33]. However, in most sub-fields there
are no standards or mandatory certifications in place. P12
mentioned that they have not done any testing for certification
since they are not required to do so. P10 considers their
work as too experimental to require certification. However,
government agencies or sponsors may enforce standards to
ensure the quality of products (example quote in Table III).
Companies may also voluntarily adapt standards to better test
their systems. For example, P11 mentioned manually verifying
several standards for their robots.

B. RQ2: Challenges of designing and writing tests

We asked our participants to describe the challenges they
face when designing and writing tests for their products.
We identified four common themes of challenges from their
responses, summarized in Table IV. We provide detailed
descriptions for each theme below.

(C1) Unpredictable corner cases: Robots are typically
expected to operate in many different environments and condi-
tions. In most cases, the robotic state space is infinite, since it
interacts with the real world; predicting the exact behavior of
the physical environment is not viable [34], [35]. Attempting
to account for all possible conditions and scenarios when
designing tests is extremely difficult, if not impossible. For
example, a plastic bag flying in front of a self-driving car’s
sensor is a case that may not immediately come to mind when
designing tests. However, these unexpected corner cases are
often the cause of failures [36].

Even though this challenge of a vast input space with
unpredictable corner cases is not specific to robotic systems,
it can be more manageable in non-robotics, software systems.
In software systems (e.g., a web application), well-defined
interfaces control and limit the range of inputs that can be
received from external sources (e.g., users). P12 elaborated:

Software systems need to communicate only within
themselves and you can strongly define the range of
inputs that will come in. When a user is involved, the
range of inputs grows, but it is limited by the range
of inputs that can be produced by the user. When you
have a physical system that needs to interact with the
real world, you need to handle the vast state space and
noise in the real world.

They later shared an example of this problem where the
hardware for their robot was affected by very low temperatures
in the field. At -30°C, some of the hardware started misbehav-
ing and produced unexpected sensor data, which could lead
to poor algorithmic decisions and unexpected behaviors. This
event was something that had not been anticipated before it
was actually witnessed in the field.

5https://compliancetesting.com

(C2) Engineering complexity: The engineering effort
required to prepare all pieces needed for testing a robot can
be extremely high, as these systems can be very complex.
All of our participants unanimously described their systems
as extremely complex. P12 believes that robotics field is far
away from deploying complex systems. They said:

As an industry, we haven’t managed to deploy anything
more complex than a Roomba, which basically operates
using a one-dimensional input.

One aspect of engineering complexity involves the amount
of scaffolding that is required to put the system into a testable
state [3]. For example, P2 and P6 both consider it a challenge
to write tests for incomplete components such as cases where
the hardware of the system has not yet been fully designed or
manufactured. P10 said:

Whenever working with network protocols, I see
whether anyone has already written a protocol. If not,
I’ll start by creating a Wireshark plugin to debug the
protocol before I start working on it.

Another engineering complexity affecting test design is
the specification of test inputs. To design realistic inputs,
roboticists sometimes need to collect data from the real world,
which may be a challenge (e.g., a space rover). For instance,
P4 mentioned the need to collect gigabytes of LIDAR data to
reasonably test a small snippet of code.

Finally, the complexity of the system itself creates a chal-
lenge for roboticists to design and write tests that, as P9 puts
it, “effectively validate all requirements for the system”. P11
finds it difficult to understand what needs to be tested, and
design tests that clearly signal failures and help the developers
to identify the source of failures. They later mentioned that,
based on their experience, writing tests can consume more
time than the actual implementation. P12 believes that writing
tests sometimes requires knowledge about many fields such as
computer science, mathematics, and engineering.

(C3) Culture of testing: Our participants referred to
a culture of not believing in the value of testing in their
company or institute among not only the roboticists, but also
their sponsors and customers. For example, P4 mentioned that
many developers do not see much practical value in unit tests,
even though they theoretically understand the value of having
them. The prevalence of such culture within a community may
result in developers getting discouraged from writing effective
tests. Both P4 and P9 mentioned being under pressure by
their sponsors and clients to deliver the product as quickly as
possible, and being discouraged from spending time on writing
tests.

One of the characteristics of the robotics community is that
it brings together people from many different disciplines (e.g.,
electrical and mechanical engineering). While the diversity of
the community is a driving factor for many great advances in
robotics, it can also introduce challenges. As P11 said:

The world of robotics unites folks from different back-
grounds. Folks from a software background might ob-
serve testing differently from those who aren’t.

https://compliancetesting.com


TABLE IV
A SUMMARY OF THE CHALLENGES OF WRITING AND DESIGNING TESTS FOR ROBOTICS THAT WE IDENTIFIED BASED ON PARTICIPANT RESPONSES.

CHALLENGES IN BOLD ARE DISCUSSED IN MORE DETAIL IN THE TEXT.

ID Title Description Representative quote

C1 Unpredictable corner
cases The challenge of attempting to anticipate and cover for

all possible edge cases within a large (and possibly
unbounded) state space when designing tests.

“We know that the customer is going to do something
really stupid with the robot. It’s hard to imagine what
stupid things some [users] are going to do.” – P8

C2 Engineering
complexity A disproportionate level of engineering effort is required

to build and maintain end-to-end test harnesses for
robotic systems with respect to the benefit of those tests.

“Writing tests for a [ROS] node can be difficult because
you have to have all the workspace built to run your unit
tests.” – P1

C3 Culture of testing The challenge of operating within a culture that places
little value on testing and provides developers with few
incentives to write tests.

“The biggest bottleneck in testing robotics is developers
not wanting to do it.” – P1

C4
Coordination,
collaboration, and
documentation

A lack of proper channels for coordination and
collaboration among multiple teams (especially software
and hardware teams), and a lack of documentation.

“There are so many people working on the same software
stack. Sometimes there will be inconsistency.” – P3

Another cultural aspect of the robotics community that im-
pacts testing practices pertains to the age of the industry and its
associated startup culture that often values rapid prototyping
and development over testing and quality assurance. P10 said:

The robotics community are more focused on making
cool things than software quality and making things
better.

The desire to be first to the market and having the robot
with greatest number of features is often valued more than
the quality and robustness of the robot.

Finally, we observed from the responses of our participants
that there is often a high degree of reliance upon intuition
during testing and development. P2, P4, P6, and P12 all
specifically mentioned their intuition as an important tool for
testing and debugging. For example, P2 said:

Personally, I have an intuition. I think I know what
when something goes wrong.

(C4) Coordination, collaboration, and documentation:
In many robotics companies, significant coordination and
collaboration is required to design meaningful tests for the
system (especially for full system tests). This coordination can
take place between separate development and testing teams, or
between software and hardware teams. For example, both P2
and P3 found it challenging to integrate components developed
by different teams and to coordinate final full-system testing
after integration of software and hardware. A lack of docu-
mentation for third-party components adds further complexity
to writing tests. Many robotic systems consist of third-party
components for which full access to the source code is not
granted. Furthermore, developers are often less familiar with
such components since they did not develop those components
themselves, and as such, they need to refer to documentation
when designing tests involving third-party components. P10
faced this challenge when writing tests involving a third-party
component without any form of documentation.

An additional challenge is that there are very few standards
and guidelines for practitioners to guide their testing. P8 said:

A standard for robotic system testing would be neat. A
process to follow. Like “here’s how you assess a robotic
system”.

The more popular and advanced subfields of robotics (e.g.,
self-driving vehicles) are already beginning to provide stan-
dards and certification [33]. As P10 describes, “some areas of
robotics have very crystalized safety regulations”.

C. RQ3: Challenges of running and automating tests

We asked our participants to describe the challenges they
face when running tests on their systems, and the challenges of
automating their tests. Below, we describe the five challenges,
summarized in Table V, that we extracted from participant
responses.

(C5) Cost and resources: There are several costs in-
volved in running tests for robotics systems. First, conducting
manual field testing can be dangerous and expensive. P10
described an accident where the robotic arm behaved unex-
pectedly, and crashed into the tester on their knee. They further
said:

Once you experience a few accidents [during field
testing], you realize that testing is really dangerous.
If a typical software system like Excel crashes, no-one
dies. For robotics, that certainly isn’t the case.

Second, developers and test teams need to spend many hours
running test scenarios on the robot. The test team of P3’s
company receives tens to hundreds of test requests every day,
but their time and resources (e.g., physical robots) are limited.
Given limited time and resources, developers and testers are
forced to select, prioritize, and minimize tests in order to test
as many changes to the software or requirements as is possible.
Third, it may take a long time to run the tests. P1, P6, P8,
and P9 all find the long running time of tests as one of the
challenges of testing.

Finally, the cost of the equipment and setup required for
running tests may be prohibitively expensive for smaller
companies. P10 said that their robots are so expensive that
they need to be extremely careful when interacting with them.
To be able to design large-scale automated tests for their robot,



TABLE V
SUMMARY OF CHALLENGES IDENTIFIED WHEN ASKING ABOUT RUNNING AND AUTOMATING TESTS FOR ROBOTICS. THE ONES IN BOLD ARE DISCUSSED

IN MORE DETAILS.

ID Title Description Representative quote
C5 Cost and resources The cost of running and automating the tests in terms of

human hours, resources and setup, and running time.
“Full testing is expensive because you have to pay for the
labor for someone to test. If there is downtime for robots,
then there is cost to pay people to wait for the fix.” – P9

C6 Environmental
complexity The inherent difficulties of attempting to account for the

complexities of the real world when simulating, testing,
and reproducing full-system behavior.

“Simulation just doesn’t reflect the real world. It is hard
to find a test environment [for our robot]. Logistics are
also difficult, like how the sunlight affects sensors.” – P2

C7 Lack of oracle The challenge of specifying an oracle that can
automatically distinguish between correct and incorrect
behavior.

“Manual tests are much more open-ended and can be
used to test strange, unexpected behaviors.” – P6

C8 Software and
hardware integration Difficulties that arise when different software and

hardware components of the system are integrated and
tested.

“The specification says something, you implemented it
correctly, the test succeeds, but then when you deploy it
to the actual robot, it fails and you’re confused; turns
out that different things happen when you run on the
real hardware.” – P10

C9 Distrust of simulation A lack of confidence in the accuracy and validity of
results obtained by testing in simulation and synthetic
environments, and a sole reliance on field testing.

“It’s unlikely that bugs found in the field would be found
in simulation testing.” – P4

P8 needs to build a framework that can automatically capture
the state of the robot. P8 believed that it is less expensive for
their company to pay an intern to manually test the robot,
rather than designing a computer vision platform that will
allow them to write automated tests. P1 uses simulation for
running tests, but finds simulation a bottleneck of their testing
practices because of its low speed and the amount of resources
required for running it.

Similarly, automating tests requires significant efforts and
investment that may be considered too expensive in terms
of developer hours and resources. P1 describes automating
tests of specific hardware and network interactions as “too
much work” as they need to use mocks and patches to imitate
other components. P2 and P11 both claim that establishing an
infrastructure for automated testing (via simulation) is very
difficult and expensive. P8 and P9 believe that it is always
possible to hit deeper levels of test automation as long as the
cost is justifiable. For example, P8 said:

There’s a trade-off between cost of automating tests and
number of times that we have to run them. We don’t
need to run some tests very often, so we don’t really
need to automate them.

(C6) Environmental complexity: The intended operating
environment for a robot can be very complex: robots are
embodied within the unpredictable and practically boundless
state of space of reality, and their behavior may be dependent
upon certain physical features (e.g., terrain) and phenomena
(e.g., lighting, weather). Finding a suitable environment for
testing the robot under expected operating conditions (e.g., on
Mars or in the deep ocean) can be challenging: P8 mentioned
that a challenge they face is finding as many qualitatively
different physical locations as they can to test their robot, since
every environment may have characteristics that reveals prob-
lems in their system. However, these environments sometimes
constrain the number and quality of tests that can be run.

The complexity of attempting to model physical reality also

complicates the development of high-fidelity simulators, which
are extremely important for both running and automating
tests [5], [21]. P12 believes that “no simulators currently
exist where the information is even close to the reality, they
are nowhere close to the noise and variability of real-world
data”. P2 and P10 also believe that simulation cannot provide
sufficient fidelity for testing robots in realistic scenarios.

Finally, complexities of the real world can hinder the
reproduction of bugs and certain tests. P6, P11, and P12 have
all faced the challenge of reproducing bugs they discovered in
the field. P12 used the term Heisenbugs [37] to describe these
bugs that will only manifest when you are not looking for
them. P11 believes that, even though record and replay has
many benefits, it is not ultimate solution to reproducibility
since you need to make sure that the replayed state is true to
the world (e.g., with respect to timestamps and orderings).

Record and replay was reported as a popular approach for
dealing with the challenges of testing systems with complex
environments (discussed in Section IV-A). Sensor data is
recorded in the field and then replayed for testing purposes.
This approach has advantages, in that it uses real data and it
is often easier to collect data than to synthetically create large
volumes of data. However, there are also significant limitations
to this approach. Without enough varied data, developers can
run the risk of overfitting their approach to the recorded data,
which might not represent the true variety of environments
the robot will operate in. Additionally, because of the non-
interactive nature of record-and-replay, it cannot be used for
testing scenarios where there must be a feedback loop between
the robot and the environment. P11 said:

Simulators are expensive, especially if you have to write
your own. The more you are trying to test interactions
with the physical world, the more value you will see in
simulation. If there is less interaction, then record and
replay is preferable.



(C7) Lack of oracle: The well-known oracle problem
concerns how to distinguish whether a given system behavior
is correct or incorrect [38]. Fully automated tests require an
oracle that can automatically determine the correctness of
system behavior. Because of the noisy and non-deterministic
nature of robotic systems, it is difficult to discretely specify
the exact behavior that is intended [39]. For example, consider
that a robot is instructed to move to a given position, but that
the robot stops 5 centimeters away from the exact coordinates
of its destination. Should such an outcome be deemed faulty
or acceptable? In any case, due to inherently noisy sensing
and actuation, the robot is highly unlikely to reach the exact
intended position or to determine whether that position has
been reached. Both P4 and P6 find specifying automated
oracles challenging.

Furthermore, as explained by P4, in some cases, collecting
data for the ground truth is either impossible or extremely ex-
pensive. P4 provided an example where a camera responsible
for measuring the relative motion between two vehicles was
under test. To validate the correctness of data provided by this
camera, they needed a second method of measuring relative
motion between the vehicles to act as the ground truth. The
equipment and setup required to reach this ground truth turned
out to be extremely expensive.

Following challenges described in C1, the vast space of
inputs and corner cases makes it difficult to cleanly dis-
criminate between correct-but-unusual and incorrect behaviors.
P12 described this difficulty of defining suitable oracles for
automated testing as “difficult to differentiate between bad
behavior and correct, but strange behavior that is produced
by unexpected inputs”.

(C8) Software and hardware integration: Robotic sys-
tems consist of software and hardware components [2], [7].
When asked about the most important feature of robotic
systems that complicates testing, P1 responded with “robotic
hardware”. P2 said:

Robotics as a field is all about integration. Robotics is
where hardware, software, and the world come together.

To better understand the differences of a system with and
without hardware components, let us present a quote from P9:

At the full hardware level, we see hardware that is flaky,
like not assembling the cooling properly. In parts of
robotics, you are writing multiple pieces of software,
and you are running on specialized hardware, which
might be optimized for performance, so there are extra
concerns beyond traditional testing practices.

The integration of components into a system can create
unique testing challenges. P8 shared that even when software
and hardware parts work properly in isolation, they frequently
break once the software is ran on physical hardware. In P9’s
opinion, developing a robotic system resembles developing
many software and hardware systems all together (e.g., sens-
ing, planning, and manipulation), and the simplest robot is at
least three subsystems. Even though these subsystems work in
isolation, unexpected failure modes are observed when they are

combined. P3, P6, and P10 all faced confusion and challenges
while running tests after integration of software and hardware
components. P12 provided an interesting example of being
limited by the battery on the robot after integrating software
and hardware but not needing to worry about such problems
when solely testing the software.

(C9) Distrust of simulation: Simulation-based testing
appears to be a promising approach to the challenge of test
automation within the field of robotics [5], [21]. In the absence
of simulation, full-system tests need to be executed on the
real-world hardware in a real, physical environment, which
significantly constrains the possibilities for test automation
(e.g., regulations applied to testing autonomous vehicles on
public roads).

Despite being aware of the theoretical value in using sim-
ulation to automate parts of the system testing process, many
of our participants reported that they distrust the accuracy and
validity of simulated operations. P2, P4, P8, P10, and P12 all
believe the fidelity of simulation is not sufficiently high for
testing and that running tests on the actual robot is the only
way to test the system. For example, P2 said:

We mostly do field testing. That’s what really affects
what happens. The robot gets lots of impact from the
environment. Simulation just doesn’t reflect the real
world.

The lack of trust in synthetic results discourages developers
from using software-based simulation as part of their test
automation. In part, this could stem from the perceptions that
our participants shared with us that many simulation tools are
difficult to use and are more hassle than they are worth. For
example, P10 mentioned that they could extend the simulator
to be more faithful to the real world, but it is not worth the
amount of time and effort to do that when they can just test
on the real robot. P8 said:

I have more bodies that can test the hardware. I don’t
have time to build a Gazebo [plugin]. Getting the
cameras to work properly in simulation is difficult.

However, in some areas of robotics, notably self-driving
cars, significant investments have been made in improving
simulation [40]–[42]. P2 shared their opinion on this matter:

Robotics operates in such a variety of domains that
developing high fidelity simulators is very difficult and
for the most part do not exist today. However, if they did
exist (and people trusted their fidelity) I think people
would use them.

V. INTERPRETATION AND DISCUSSION

In Section IV, we identified 12 testing practices used by
robotics companies, and 9 challenges that roboticists face
when designing, running, and automating tests. In this section,
we identify 3 major themes among the identified challenges.
We support these themes by showing quotes from our par-
ticipants, and later speculate on the implications of each
theme and provide suggestions for tackling their associated
challenges. Figure 1 describes the association between each of



Real-world Community & Component
ID Title complexities standards integration
C1 Unpredictable corner cases •
C2 Engineering complexity • •
C3 Culture of testing •
C4 Coordination, collaboration, and documentation •
C5 Cost and resources • • •
C6 Environmental complexity •
C7 Lack of oracle • •
C8 Software and hardware integration •
C9 Distrust of simulation •

Fig. 1. For each theme, we indicate the challenges that support that theme.

the three themes and the challenges of testing robotic systems
that participants reported.

Real-world complexities: By definition, robotic systems
interact with the real world. This feature results in one of
the major differences between robotic systems and traditional
software systems. Interaction with complex, real-world envi-
ronments is one of the most prominent challenges of testing
robots that we observed in our interviews, and as P8 said:

Very little of the work on testing takes into account the
physical aspects of the problem.

The complexities of the real world contribute to C1 and C2
as the large input space results in unpredictable corner cases
and engineering complexity of specifying test inputs, and adds
more complications to defining oracles discussed in C7. C6
and C9 are both impacted by real-world complexities as it is
too difficult to make an abstraction of the environment, and
testing in physical environments requires more resources (C5).

One way to attempt to simplify the complexities of the
real world for the purposes of testing is simulation. However,
developers still encounter many barriers when they attempt
to use simulation [43]. As pointed out by our participants,
simulators sometimes abstract away too many nuances of the
real-world, and so developers do not feel comfortable relying
on them. In other cases, our participants responded that they
feel that simulators are excessively complex to deploy, and
since simulators often do not provide tools to manage that
complexity, developers choose not to use them.

Other techniques that may be brought to bear on the chal-
lenges that arise from the interaction between robotic systems
and the real world include record and replay, model checking,
and formal specification [3], [44]–[49]. As mentioned in C6,
record and replay is a popular approach for dealing with
the challenges of testing systems with complex environments.
However, it is only a partial solution, because of its non-
interactive nature. Model checking and formal specification are
other solutions proposed to decrease reliance on simulators for
automated testing by abstracting away the complexities of the
real-world [23], [50]–[55]. However, these systems are limited
to specific types of systems, and, based on our study, have not
yet been generally adopted in practice.

Furthermore, devising suitable oracles for full-system test-
ing can quickly become an overwhelming task, as described in
C7. To test their system, a developer may need to provide an
oracle for several interrelated subsystems, all of which provide
complex data. This can quickly become an overwhelming
challenge. We believe that addressing this challenge of defin-
ing oracles for robotic systems requires the development of
novel methods and techniques by the software engineering
and robotics communities. In recent years, a number of studies
have taken important steps towards tackling this problem [39],
[56]–[58].

As a way of approaching the oracle problem for CPSs,
studies have used metamorphic testing to observe the relations
between the inputs and outputs of multiple executions of a
CPS [55], [59], [60]. Even though metamorphic testing is a
promising approach towards the oracle problem for cyberphys-
ical and robotic systems, it requires identifying and proving
metamorphic relations in the system [61].

We believe that the design and development of higher-
fidelity simulators with better user interfaces and APIs may
lead to a wider adoption of automated simulation testing. How-
ever, in absence of such simulators, the research community
should develop novel tools and techniques for achieving test
automation.

Community and standards: Not all barriers to testing
robotic systems are a result of technical issues. Another
important theme of challenges we encountered are challenges
that stem from community and standards. From our study, we
learned that the robotics community is diverse and that people
from different backgrounds may value testing and validation
differently (C3). Many robotics practitioners are not familiar
with methods of software testing (e.g., robustness testing and
performance testing), and need guidelines to assist them in
deploying testing practices (C4). With notable exceptions (e.g.,
industrial automation), the robotics industry is relatively young
and immature, and the value of being the first to the market
often outvalues the safety and quality of the system (C5).

Standards create an advantage for robotics companies by
approving the product quality to the customers, and increasing
the business value of testing. In our study, we found that
robotics companies sometimes have standards from other



industries that they can apply to certain domain-specific parts
of their system, such as IEC standards from the vacuum
industry for how many particles a vacuum should pick up [62].
However, for the robotics part of the system, there are often no
standards or guidelines. A number of standards have already
been introduced for sub-domains of robotics such as self-
driving cars [33], [53], taking steps towards the right direction.
However, we believe that more general-purpose guidelines and
standards should be implemented to guide robotics developers,
similar to those provided to other industries by UL or ISO [63],
[64].

Component integration: The third factor that compli-
cates testing in robotic systems is the challenge of testing
integrated hardware and software systems. In addition to C8,
which is directly associated with this theme, integration of
components contributes to C2, C5, and C7 as it increases the
complexity of the system, the cost associated with testing, and
introduces complications when defining oracles.

Some of the hardware and software challenges are similar
to those found in embedded systems: timing, power consump-
tion, memory allocation, and architecture [65]. However, in
comparison to embedded systems, robotics hardware is often
much more expensive and complex.

In many cases, the considerable expense of manufacturing
robotic systems can limit the availability of hardware for
testing. While embedded systems are often small, low-power
devices with a fixed form and function, robots are often more
of an extendible platform upon which physical components
(i.e., sensors and actuators) can be added and removed
over time. We believe that the development of tools and
practices for testing robots in a more controlled fashion (e.g.,
hardware-in-the-loop testing [66]) may reduce the costs and
risks associated with field testing on expensive hardware.

We believe that these three themes best describe the major
challenges of robotics testing. Although partial solutions exist
for some of these challenges [15], [16], [20], [39], [56], [67],
in theory, the applicability and effectiveness of those solutions
in practice remains unstudied and unclear. We observed that
testing practices that are not represented by these themes,
such as unit testing, continuous integration, and plan-based
testing, were adopted by most of our participants. We also
observe that the level of associated tooling and support for
a given practice influences the uptake of that practice among
robotics developers. For example, continuous integration is a
practice that is well supported by tools and has been adopted
by many of our participants. Logging and playback is also
extremely popular among our participants. One reason behind
this popularity could be the well-established tools and support
around them, even though logging and playback still face
challenges such as C1. In contrast, simulation testing and
robustness testing are rarely adopted by our participants, as
supporting tools and infrastructure have not been properly
established yet.

VI. THREATS TO VALIDITY

Replicability Can others replicate our results? In general,
qualitative studies can be difficult to replicate. We address
this threat by making our interview script available on our
companion site.6 We cannot publish the interview transcripts
because we promised our subjects that we would preserve their
anonymity.

Construct Are we asking the right question? We used semi-
structured interviews [30] to explore themes while also letting
participants bring up new ideas throughout the interview. By
allowing participants the freedom to bring up topics, we avoid
biasing the interviews with our preconceived understanding of
testing in robotics.

Internal Did we skew the accuracy of our results with
how we collected and analyzed the information? Interviews
can be affected by intentional or unintentional bias. To mit-
igate this concern, we followed established guidelines from
literature [68], both designing and performing our interviews.
Additionally, we ran a series of iterative pilots with robotics
engineers, which we did not consider as data for the purposes
of this work, but helped us shape a productive interview.

External Do our results generalize? Because there is a lot
that is not known about testing in robotics, in this work we
decided to prioritize depth over breadth. While our interviews
did generate very rich data for us to analyze, we cannot make
broad claims about how prevalent these practices are across
the industry. To mitigate this threat, we constructed a sample
with a specific eye for breadth, interviewing participants across
a wide range of companies, sizes, and sectors.

VII. CONCLUSION

In this paper, we studied robotics testing practices and
challenges by conducting a qualitative study with 12 robotics
practitioners from 11 different robotics companies. We identi-
fied 12 testing practices mentioned by roboticists in practice,
and 9 challenges they face while testing their systems. We
identified three main themes of challenges that impact testing
practices in the field of robotics: real-world complexities,
community and standards, and component integration. We
believe that there is a gap in robotics testing and that the
research community should focus on these three major themes
of challenges to address the challenges of robotics testing and
to develop the next generation of quality assurance techniques
for robotic systems.

ACKNOWLEDGMENT

This research was partially supported by AFRL (#FA8750-
15-2-0075), DARPA (#FA8750-16-2-0042), and the NSF
(#CCF-1563797); the authors are grateful for their support.
Any opinions, findings, or recommendations expressed are
those of the authors and do not necessarily reflect those of
the US Government.

6https://doi.org/10.5281/zenodo.3625199

https://doi.org/10.5281/zenodo.3625199


REFERENCES

[1] “Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots
Roam,” https://www.nytimes.com/2018/03/19/technology/uber-
driverless-fatality.html, accessed: 2020-01-03.

[2] L. Esterle and R. Grosu, “Cyber-physical systems: challenge of the 21st
century,” e & i Elektrotechnik und Informationstechnik, vol. 133, no. 7,
pp. 299–303, 2016.

[3] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy soft-
ware,” in International Conference on Software Engineering: Software
Engineering in Practice, ser. SEIP’18. ACM, 2018, pp. 276–285.

[4] P. Duan, Y. Zhou, X. Gong, and B. Li, “A systematic mapping study
on the verification of cyber-physical systems,” IEEE Access, vol. 6, pp.
59 043–59 064, 2018.

[5] S. A. Seshia, S. Hu, W. Li, and Q. Zhu, “Design automation of
cyber-physical systems: Challenges, advances, and opportunities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 9, pp. 1421–1434, 2016.

[6] D. Marijan, A. Gotlieb, and M. K. Ahuja, “Challenges of testing machine
learning based systems,” in International Conference On Artificial
Intelligence Testing, ser. AITest’19. IEEE, 2019, pp. 101–102.

[7] H. Li, Communications for control in cyber physical systems: theory,
design and applications in smart grids. Morgan Kaufmann, 2016, ch.
1-Introduction to cyber physical systems.

[8] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[9] A. Causevic, D. Sundmark, and S. Punnekkat, “An industrial survey on
contemporary aspects of software testing,” in International Conference
on Software Testing, Verification and Validation, ser. ICST’10. IEEE,
2010, pp. 393–401.

[10] V. Garousi and J. Zhi, “A survey of software testing practices in canada,”
Journal of Systems and Software, vol. 86, no. 5, pp. 1354–1376, 2013.

[11] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A preliminary
survey on software testing practices in australia,” in Australian Software
Engineering Conference. IEEE, 2004, pp. 116–125.

[12] E. Engström and P. Runeson, “A qualitative survey of regression testing
practices,” in International Conference on Product Focused Software
Process Improvement. Springer, 2010, pp. 3–16.

[13] S. K. Khaitan and J. D. McCalley, “Design techniques and applications
of cyberphysical systems: A survey,” IEEE Systems Journal, vol. 9, no. 2,
pp. 350–365, 2014.

[14] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed.
Cambridge University Press, 2008.

[15] A. Paikan, S. Traversaro, F. Nori, and L. Natale, “A generic testing
framework for test driven development of robotic systems,” in Interna-
tional Workshop on Modelling and Simulation for Autonomous Systems.
Springer, 2015, pp. 216–225.

[16] S. Sheng and N. Becker, “Challenges in standardizing ram testing for
small unmanned robotic systems,” in Reliability and Maintainability
Symposium, ser. RAMS’13. IEEE, 2013, pp. 1–6.

[17] Y. K. Chung and S.-M. Hwang, “Software testing for intelligent robots,”
in International Conference on Control, Automation and Systems. IEEE,
2007, pp. 2344–2349.

[18] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,” IEEE
Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[19] I. Dı́az, J. J. Gil, and E. Sánchez, “Lower-limb robotic rehabilitation:
literature review and challenges,” Journal of Robotics, vol. 2011, 2011.

[20] M. Mossige, A. Gotlieb, and H. Meling, “Testing robot controllers using
constraint programming and continuous integration,” Information and
Software Technology, vol. 57, pp. 169–185, 2015.

[21] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “On the state of the
art in verification and validation in cyber physical systems,” Technical
Report at The University of Texas at Austin, The Center for Advanced
Research in Software Engineering, vol. 1485, 2014.

[22] A. Alami, Y. Dittrich, and A. Wasowski, “Influencers of quality as-
surance in an open source community,” in International Workshop
on Cooperative and Human Aspects of Software Engineering, ser.
CHASE’18. IEEE, 2018, pp. 61–68.

[23] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” ACM Computing Surveys, vol. 52, no. 5, p. 100, 2019.

[24] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,”
in International Symposium on Foundations of Software Engineering,
ser. FSE’16. ACM, 2016, pp. 109–120.

[25] S. Phillips, T. Zimmermann, and C. Bird, “Understanding and improving
software build teams,” in International Conference on Software Engi-
neering, ser. ICSE’14, 2014.

[26] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in International Conference on
Software Engineering, ser. ICSE’06, 2006.

[27] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka, “Transition from
Centralized to Decentralized Version Control Systems: A Case Study
on Reasons, Barriers, and Outcomes,” in International Conference on
Software Engineering, ser. ICSE’14, 2014.

[28] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How Do Software
Engineers Understand Code Changes? – An Exploratory Study in
Industry,” in International Symposium on the Foundations of Software
Engineering, ser. FSE’12, 2012.

[29] C. McNamara, “General guidelines for conducting interviews,” 1999.
[30] F. Shull, J. Singer, and D. I. K. Sjøberg, Eds., Guide to Advanced

Empirical Software Engineering, 2008.
[31] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,

“Crashing simulated planes is cheap: Can simulation detect robotics bugs
early?” in International Conference on Software Testing, Verification and
Validation, ser. ICST’18. IEEE, 2018, pp. 331–342.

[32] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand, “Can
robot navigation bugs be found in simulation? an exploratory study,” in
International Conference on Software Quality, Reliability and Security,
ser. QRS’17. IEEE, 2017, pp. 150–159.

[33] EdgeCase, “Ul 4600: The first comprehensive safety standard for
autonomous products,” https://edge-case-research.com/ul4600/, 2019,
[Online; accessed 4-October-2019].

[34] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical
systems: from theory to practice. CRC Press, 2015.

[35] S. Ali, H. Lu, S. Wang, T. Yue, and M. Zhang, “Uncertainty-wise testing
of cyber-physical systems,” in Advances in Computers. Elsevier, 2017,
vol. 107, pp. 23–94.

[36] R. Banabic, “Techniques for identifying elusive corner-case bugs in
systems software,” EPFL, Tech. Rep., 2015.

[37] J. Gray, “Why do computers stop and what can be done about it?” in
Symposium on reliability in distributed software and database systems,
1986, pp. 3–12.

[38] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2014.

[39] Z. He, Y. Chen, E. Huang, Q. Wang, Y. Pei, and H. Yuan, “A system
identification based oracle for control-cps software fault localization,” in
International Conference on Software Engineering, ser. ICSE’19. IEEE
Press, 2019, pp. 116–127.

[40] “A Waymo engineer told us why a virtual-world simulation is crucial
to the future of self-driving cars,” https://www.businessinsider.com/
waymo-engineer-explains-why-testing-self-driving-cars-virtually-is-
critical-2018-8, accessed: 2020-01-03.

[41] “Simulation Becomes Increasingly Important For Self-Driving
Cars,” https://www.forbes.com/sites/davidsilver/2018/11/01/simulation-
becomes-increasingly-important-for-self-driving-cars/#56b1fa045583,
accessed: 2019-10-13.

[42] “NVIDIA Driver Constellation,” https://www.nvidia.com/en-us/self-
driving-cars/drive-constellation/, accessed: 2019-10-13.

[43] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in
International Conference on Robotics and Automation, ser. ICRA’15.
IEEE, 2015, pp. 4397–4404.

[44] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases
for self-driving cars from police reports,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE ’19, 2019, pp. 257–267.

[45] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in International
Symposium on Software Testing and Analysis, ser. ISSTA ’19, 2019, pp.
318–328.

[46] C. A. González, M. Varmazyar, S. Nejati, L. C. Briand, and Y. Isasi,
“Enabling model testing of cyber-physical systems,” in International

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://edge-case-research.com/ul4600/
https://www.businessinsider.com/waymo-engineer-explains-why-testing-self-driving-cars-virtually-is-critical-2018-8
https://www.businessinsider.com/waymo-engineer-explains-why-testing-self-driving-cars-virtually-is-critical-2018-8
https://www.businessinsider.com/waymo-engineer-explains-why-testing-self-driving-cars-virtually-is-critical-2018-8
https://www.forbes.com/sites/davidsilver/2018/11/01/simulation-becomes-increasingly-important-for-self-driving-cars/#56b1fa045583
https://www.forbes.com/sites/davidsilver/2018/11/01/simulation-becomes-increasingly-important-for-self-driving-cars/#56b1fa045583
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/


Conference on Model Driven Engineering Languages and Systems, ser.
MODELS’18. ACM, 2018, pp. 176–186.

[47] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Formal requirement de-
bugging for testing and verification of cyber-physical systems,” ACM
Transactions on Embedded Computing Systems, vol. 17, no. 2, p. 34,
2018.

[48] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdis-
ciplinary challenge,” IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 1, pp. 90–96, 2017.

[49] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in International Conference on Automated
Software Engineering, ser. ASE’18. ACM, 2018, pp. 132–142.

[50] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in International Conference on
Runtime Verification. Springer, 2017, pp. 172–189.

[51] M. Farrell, M. Luckcuck, and M. Fisher, “Robotics and integrated formal
methods: necessity meets opportunity,” in International Conference on
Integrated Formal Methods. Springer, 2018, pp. 161–171.

[52] A. Desai, S. Qadeer, and S. A. Seshia, “Programming safe robotics
systems: Challenges and advances,” in International Symposium on
Leveraging Applications of Formal Methods. Springer, 2018, pp. 103–
119.

[53] F. Ingrand, “Recent trends in formal validation and verification of
autonomous robots software,” in International Conference on Robotic
Computing, ser. IRC’19. IEEE, 2019, pp. 321–328.

[54] E. Zibaei, S. Banescu, and A. Pretschner, “Diagnosis of safety incidents
for cyber-physical systems: A uav example,” in International Conference
on System Reliability and Safety, ser. ICSRS’18. IEEE, 2018, pp. 120–
129.

[55] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of
deep-neural-network-driven autonomous cars,” in International Confer-
ence on Software Engineering, ser. ICSE ’18, 2018, pp. 303–314.

[56] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
Symposium on Security and Privacy, ser. SP’18. IEEE, 2018, pp. 648–
660.

[57] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical
analysis of audit trails for host-based intrusion detection,” Transactions
on computers, vol. 51, no. 7, pp. 810–820, 2002.

[58] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly
detection for a water treatment system using unsupervised machine
learning,” in International Conference on Data Mining Workshops, ser.
ICDMW ’17, 2017, pp. 1058–1065.

[59] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Communications of the ACM, vol. 62, no. 3, pp. 61–67, Feb. 2019.

[60] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic
model-based testing of autonomous systems,” in International Workshop
on Metamorphic Testing, ser. MET ’17, 2017, pp. 35–41.

[61] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, p. 4, 2018.

[62] “IEC standards,” https://webstore.iec.ch/publication/30410, accessed:
2019-10-13.

[63] “Ul standards,” https://ulstandards.ul.com, accessed: 2019-10-13.
[64] “ISO standards,” https://www.iso.org/standards.html, accessed: 2019-

10-13.
[65] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-

physical systems approach. MIT Press, 2016.
[66] H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein, “Review of

hardware-in-the-loop simulation and its prospects in the automotive
area,” in Modeling and Simulation for Military Applications, K. Schum
and A. F. Sisti, Eds., vol. 6228, International Society for Optics and
Photonics. SPIE, 2006, pp. 117–136.

[67] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-wise
cyber-physical system test modeling,” Software & Systems Modeling,
vol. 18, no. 2, pp. 1379–1418, 2019.

[68] I. Seidman, Interviewing as Qualitative Research: A Guide for
Researchers in Education and the Social Sciences. Teachers College
Press, 2006. [Online]. Available: https://books.google.com/books?id=
pk1Rmq-Y15QC

https://webstore.iec.ch/publication/30410
https://ulstandards.ul.com
https://www.iso.org/standards.html
https://books.google.com/books?id=pk1Rmq-Y15QC
https://books.google.com/books?id=pk1Rmq-Y15QC

